Схемы светодиодных мигалок. Световой декор – как сделать мигающий светодиод Как сделать мигающий светодиод 3 вольта

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания . Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .

Вот принципиальная схема одной из простейших мигалок. Базовой основой данной схемы является симметричный мультивибратор . Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер - Hz).

Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения - около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно - оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 - 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.

Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

Транзисторы VT1, VT2

КТ315 с любым буквенным индексом
Электролитические конденсаторы C1, C2 10...100 мкф (рабочее напряжение от 6,3 вольт и выше) К50-35 или импортные аналоги
Резисторы R1, R4 300 Ом (0,125 Вт) МЛТ, МОН и аналогичные импортные
R2, R3 22...27 кОм (0,125 Вт)
Светодиоды HL1, HL2 индикаторный или яркий на 3 вольта

Стоит отметить, что у транзисторов КТ315 есть комплементарный «близнец» - транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n , а КТ361 – p-n-p . Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы .

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит «высох» и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость («высох»), чем другой.

Для питания схемы потребуется блок питания с выходным напряжением 4,5 - 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В *3 = 4,5 В). О том, как правильно соединять батарейки читайте .

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение - 10....16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены и являются рабочими. Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений (если собирали на макетке). Перед впаиванием деталей в схему их стоит проверить мультиметром , чтобы потом не удивляться: «А почему не работает?»

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Сразу, оговорюсь, идея не моя, она была взята на сайте chipdip.ru. Это простая мигалка на 6 светодиодах, особенностью которой является полное отсутствие дополнительных активных управляющих элементов (транзисторы, микросхемы).

Основой устройства является мигающий светодиод красного свечения HL3 последовательно, с которым включено два обычных красных светодиода HL1 и HL2. Когда вспыхивает мигающий светодиод HL3, вместе с ним загораются и светодиоды HL1 и HL2.

При этом открывается диод VD1, который шунтирует зеленые светодиоды HL4-HL6, которые при этом гаснут.

Когда мигающий светодиод HL3 гаснет, вместе с ним гаснут светодиоды HL1 и HL2, при этом загорается группа зеленых светодиодов HL4-HL6.

Затем весь цикл повторяется. Более подробно вы можете посмотреть про мигалку на этом видео:

Простая мигалка

Устройство питается от батареи типа «Крона» напряжением 9 В. Резисторы типа МЛТ-0,125, R1 100 Ом, R2 300 Ом. В первоисточнике использован диод VD1 типа КД522, он был заменен на Д220. Светодиоды могут быть любыми на напряжение 2,5-3 В, и ток 10-30 мА. С уважением, Лекомцев Д. Г.

Начинать изучение основ электроники рекомендуется со сборки простых и наглядных схем, поэтому схема мигалки в различных исполнениях и вариантах, как нельзя лучше подойдет начинающем радиолюбителям в их нелегком пути. Кроме того эти конструкции могут пригодится и в повседневном использование. Например в роли праздничных световых украшений или в качестве муляжа сигнализации.


Элементарная схема мигалки на шести светодиодах, особенностью которой является простота и отсутствие активных управляющих элементов, такие как, транзисторы, тиристоры или микросхемы.

С третьим мигающим светодиодом красного цвета последовательно включено два обычных красных светодиода 1 и 2. Когда вспыхивает мигающий 3, вместе с ним светяться 1 и 2. При этом открывающийся диод шунтирует зеленые светодиоды 4-6, которые при этом тухнут. Когда мигающий гаснет, вместе с ним тухнут 1 и 2 светодиоды, при этом загорается группа зеленых светодиодов 4-6.

Эта схема управления миганием светодиодов позволяет создать эффект хаотичных вспышек. Принцип работы основан на лавинном пробое перехода .

При включении через сопротивление R1 начинает заряжаться емкость С1 и поэтому на нем начинает расти напряжение. Пока конденсатор заряжается, не что не меняется. Как только напряжение достигнет 12 вольт, произойдет лавинный пробой p-n перехода полупроводникового прибора, проводимость его увеличивается и поэтому, светодиод начинает гореть за счет энергии разряжающегося C1.

Когда напряжение на емкости снизится ниже 9 вольт, транзистор закрывается, и весь процесс повторяется с самого начала. Другие пять блоков схемы работают по аналогичному принципу.

Номиналы сопротивлений и конденсаторов задают частоту работы каждого отдельно взятого генератора. Сопротивления, кроме того, защищают транзисторы от выхода из строя во время лавинного пробоя.

Самым простой способ собрать мигающую конструкцию, это использовать специализированную микросхему LM3909, которую достаточно легко достать.

К микросборке достаточно подсоединить частотозадающую цепь, подать питание ну и, конечно, сам светодиод. Вот вам и готовое устройство имитации сигнализации в автомобиле.

При указанных номиналах частота мигания будет около 2,5 Герц

Отличительной чертой этой конструкции является возможность регулировать частоту мигания с помощью подстроечных сопротивлений R1 и R3.

Напряжение можно подавать от любого или от батареек, область использования на всю ширину вашей фантазии.

В данной конструкции используется в качестве генератора и периодически открывает и запирает полевой транзистор. Ну а транзистор включает цепочки уже обычных светодиодов.

Первая и вторая цепочки светодиодов соединены между собой параллельно и получают питание через сопротивление R4 и канал полевого транзистора.

Третья и четвертая цепочки подсоединены через диод VD1. Когда транзистор заперт, горят третья и четвертая цепочка. Если он открыт, то светят, первый и второй участок.

Мигающий светодиод подсоединен через сопротивления R1, R2, R3. Во время его вспышки осуществляется открытие полевого транзистора. Все детали, кроме батарейки, устанавливают на печатной плате.

Достаточно простые радиолюбительские конструкции получатся если использовать обычные . Правда, следует помнить об их особенностях работы, а именно о том, что они открываются при поступлении на управляющий электрод определенного уровня напряжения, а для их запирания нужно уменьшить ток анода до значения меньше тока удержания.

Конструкция состоит из генератора коротких импульсов на полевом транзисторе VT1 и двух каскадов на тиристорах. В анодную цепь одного из них подсоединена лампа накаливания EL1.

В начальный момент времени после включения питания оба тиристора закрыты и лампа не светится. Генератор создает короткие импульсы с интервалом, зависящим от цепочки R1C1. Первый импульс поступая на управляющие электроды, открывает их, зажигая лампу.

Через лампу потечет ток, VS2 останется открытым, а VS1 закроется, потому что его анодный ток, установленный сопротивлением R2, слишком мал. Емкость С2 начинает заряжаться через R2 и к моменту формирования второго импульса окажется уже заряженной. Этот импульс осуществит отпирание VS1, а вывод конденсатора С2 кратковременно подсоединится к катоду VS2 и закроет его, лампа потухнет. Как только С2 разрядится оба тиристора будут запертыми. Очередной импульс генератора приведет к повторению процесса повторится. Таким образом лампочка накаливания вспыхивает с частотой, вдвое меньшей заданной частоты генератора.

Основа конструкции простой мультивибратор на двух транзисторах. Они могут быть почти любые, необходимой проводимости.

Питание подключаю от габарита через сопротивление, второй провод - масса. Светодиоды закрепил в панельки от спидометра и тахометра.

Мастер раскрывает секрет простой светодиодной мигалки со звуком, построенной своими руками на основе электроники от сломанных электронно-механических часов.

Как сделать мигалку со звуком своими руками

Для работы необходим механизм от электронно-механических часов с тикающим ходом. Подойдет и сломанный механизм, так как неисправность на 99% связана с повреждением механики. Обратите внимание, что механизм с плавным ходом для поделки не подходит. Отличить механизмы просто, если внимательно посмотреть на фотографии, то под корпусом тикающих часов хорошо заметно 3 больших шестеренки, а вот под корпусом механизма плавного хода присутствует четыре шестеренки. Процесс извлечения платы электроники хорошо показан на видео. Далее работу со схемой необходимо провести по следующей инструкции:

1. Извлекаем своими руками всю механику и откладываем ее в сторону. Провода от катушки можно оборвать.

2. Помечаем на плате полярность клемм питания. Аккуратно поддеваем плату электроники и извлекаем ее.

Механизм тикающего хода

3. Залуживаем припоем контактные площадки. Делать это надо быстро и аккуратно. Площадки при перегреве легко отслаиваются и потом обрываются.

4. Припаиваем проводники питания. Микросхема часов будет работать при подаче напряжения от 1,5 до 5 Вольт.

5. Припаиваем к плате звуковой излучатель типа TR1203 и любой светодиод в зависимости для каких целей вы хотите использовать полученную схему. Смотрите видео и фото схемы мигалки. Мигалка будет работать и каждую секунду должна моргать светодиодом, а затем пикать. Этим схема пожалуй и отличается от всех подобных мигалок пикалок. Можно подключить к схеме два светодиода и они будут последовательно и поочередно вспыхивать, чем не готовый контроллер для летающих моделей копий самолетов?

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Данная схема может использоваться для индикации тревоги. Самоделка подключается к стабилизированному источнику питания с напряжением 12 В. Таким источником может быть блок питания с регулируемым напряжением на выходе, купленный на радиорынке. Стабилизированным источник питания называется потому, что содержит стабилизатор, который держит выходное напряжение на определенном уровне.

Схема максимально проста, содержит всего лишь 4 детали: транзистор КТ315 структуры п-p-n, резистор на 1,5 кОм, электролитический конденсатор на 470 мкФ и напряжением не менее 16 В (напряжение конденсатора должно быть всегда на порядок больше, напряжения питания самоделки) и светодиод (в нашем случае красного свечения). Для правильного подключения деталей надо знать их цоко-левку (распиновку). Распиновка транзистора и светодиода данной конструкции представлена на рис. 5.2. Транзисторы серии КТ315 по внешнему виду такие же, как и КТ361. Отличие только в размещении буквы. У первых буква размещается сбоку, у вторых - посередине.

Теперь с помощью паяльника и проводов попробуем собрать наше устройство. На рис. 5.3 показано, как вы должны соединить между собой детали. Синие линии - это провода, жирные черные точки - места пайки. Такой монтаж называется навесным, существует также монтаж на печатных платах.

Рис. 5.2. - Распиновка:
a) транзистор КТ315Б
б) светодиод АЛ307Б

Рис. 5.3. - Внешний вид собранного устройства
Проверьте правильность соединения деталей и подключите устройство к блоку питания. Свершилось чудо - светодиод стал ярко вспыхивать. Ваша первая самоделка заработала!!!