Автогенераторы на туннельных диодах. Особенности работы. Режим работы туннельного диода. Схема генератора гармонических колебаний на туннельном диоде. Некоторые схемы на туннельных диодах. Схема, описание

Полупроводниковые диоды достаточно редко используются в качестве основных элементов генераторных и усилительных узлов. Являясь в большинстве своем чисто пассивными компонентами, они просто не могут выступать в роли источника тока или напряжения, необходимых для любого генератора или усилителя. Однако существует достаточно немногочисленный ряд случаев, когда при применении полупроводниковых диодов определенных типов (туннельные диоды , диоды Ганна , лавинно-пролетные диоды , параметрические диоды) возможно построение диодных усилительных и генераторных схем.

Такие полупроводниковые приборы как: туннельные диоды , диоды Ганна , лавинно-пролетные диоды объединяет одно свойство - наличие на ВАХ прибора при определенных условиях участка с отрицательным дифференциальным сопротивлением. В каждом из названных приборов физические эффекты, обусловливающие появление такого участка различны. В туннельном диоде - это резкий спад туннельного эффекта при росте напряженности электрического поля в полупроводнике выше некоторого критического значения, в диоде Ганна - особенности зонной структуры арсенида-галлия, в лавинно-пролетном диоде - специфика лавинного пробоя при высоких частотах приложенного напряжения. Следует отметить, что названные случаи не являются единственными. Примером может служить широко известный и популярный в 30-х гг. кристадин Лосева , также представлявший собой полупроводниковый диод введенный в особый режим пробоя.

На сегодняшний день набольшее распространение получили диодные автогенераторы диапазона СВЧ. В них используются диоды Ганна и лавинно-пролетные диоды . При определенных условиях такие генераторы могут быть преобразованы в усилители и использоваться для резонансного усиления СВЧ сигналов. Однако ввиду повышенного уровня шумов и практической нерациональности усилители на диодах Ганна и лавинно-пролетных диодах применяются крайне редко.

Особый вид усилительных устройств диапазона СВЧ - это т.н. параметрические усилители . Они строятся на основе специальных параметрических диодов . Принцип работы таких усилителей очень близок к тому, как работают описанные выше диодные смесители. На параметрический диод, также как и в смесителях, подается два сигнала. При определенном согласовании этих сигналов и правильном выборе режима работы диода удается на нелинейной проводимости или емкости диода осуществить перераспределение мощности падающих сигналов в пользу одного из них (полезного). Одновременно возможно и преобразование частоты этого сигнала. Параметрические усилители диапазона СВЧ очень сложны в настройке и достаточно нестабильны. Их основное достоинство - уникально низкий уровень шумов. Поэтому они чаще всего используются в радиотелескопах и системах дальней космической связи.

Наибольший интерес и практическую ценность могут представлять туннельные диоды . Генераторные и усилительные устройства на их основе могут быть использованы в радиоприемниках, радиомикрофонах, измерительной аппаратуре и т.п.

Упрощенная схема автогенератора на туннельном диоде представлена на рис. 3.6-42.

Рис. 3.6-42. Упрощенная схема автогенератора на туннельном диоде

Так как на ВАХ туннельного диода имеется участок с отрицательным сопротивлением устойчивым по напряжению, то при подключении к нему параллельного колебательного контура он может генерировать. При этом отрицательное сопротивление диода будет компенсировать потери, и в контуре могут возникнуть и поддерживаться незатухающие колебания. Современные туннельные диоды могут генерировать на частотах до 1 ГГц и более. Однако из-за небольшой величины участка ВАХ диода с отрицательным сопротивлением мощность, отдаваемая им на любых частотах, составляет доли милливатт. Чтобы форма генерируемых колебаний не искажалась, как правило, применяют частичное включение диода в контур генератора. Основным условием генерации является превышение величины сопротивления потерь контура над величиной отрицательного сопротивления туннельного диода. Учитывая, что параллельное сопротивление потерь в реальных колебательных контурах значительно превышает отрицательное сопротивление туннельного диода, используется частичное включение диода в контур (через отвод катушки).

На внутреннем сопротивлении источника смещения будет выделяться часть мощности генерируемых колебаний, поэтому оно должно быть как можно меньше. Поскольку требуемая величина напряжения смещения очень мала (например, для германиевых туннельных диодов порядка 0,1...0,15 В), питание туннельных диодов обычно осуществляется от делителя напряжения (рис. 3.6-43). Однако это может привести к неэкономному расходованию мощности источника питания (что важно для сверхминиатюрных устройств). Поэтому для питания туннельных диодов следует применять источники с возможно более низким выходным напряжением. Выходное сопротивление делителя напряжения выбирают в пределах 5...10 Ом, и только в устройствах, где требуется наибольшая экономичность, его можно повысить до 20...30 Ом. Отрицательное сопротивление туннельного диода должно превышать сопротивление делителя в 5...10 раз. Шунтировать столь малые сопротивления конденсаторами для уменьшения потерь высокочастотной энергии нецелесообразно, так как в ряде случаев это может привести к неустойчивой работе генератора, особенно, если его режим подбирался по максимуму отдаваемой мощности. Следует учитывать, что для стабильной работы генератора нужно поддерживать стабильное положение рабочей точки диода. При изменении величины питающего напряжения хотя бы на 10 % (например, из-за разрядки химического элемента питания) нормальная работа генератора может нарушиться. Иногда целесообразно использовать предварительно стабилизированное напряжение или применять в делителе нелинейные сопротивления (в верхнем плече стабилизирующие ток, а в нижнем - напряжение). Так, если в схеме автогенератора (рис. 3.6-43) вместо сопротивления R2 применить маломощный германиевый диод в прямом включении, как это показано на рис. 3.6-44, стабильность работы генератора улучшится, и при изменении напряжения питания в пределах 1...1,5 В никаких дополнительных регулировок не потребуется.

Рис. 3.6-43. Схема автогенератора на туннельном диоде с питанием от делителя напряжения

Рис. 3.6-44. Схема автогенератора на туннельном диоде с нелинейным сопротивлением в цепи питания

Все упомянутые выше способы стабилизации напряжения несколько усложняют схемы, а в ряде случаев увеличивают потребляемую мощность, поэтому широкого применения они не находят. В реальной аппаратуре туннельные диоды чаще всего применяются совместно с транзисторами. Известно, что у транзистора ток эмиттера сравнительно мало зависит от напряжения питания коллектора, особенно если смещение транзистора стабилизировано каким-либо способом. Поэтому при питании диода эмиттерным током транзистора можно получить выигрыш не только в стабильности, но и в экономичности. Последняя повышается здесь из-за того, что потери на верхнем плече делителя устраняются, а дополнительная мощность, потребляемая туннельным диодом, невелика.

На рис. 3.6-45, 3.6-46, 3.6-47 представлены три примера применения генератора на туннельном диоде. При проектировании таких генераторов следует стремиться получить максимальную добротность колебательного контура с тем, чтобы увеличить мощность, отдаваемую в нагрузку.

Рис. 3.6-45. Простейший передатчик на туннельном диоде

Рис. 3.6-46. Улучшенная схема передатчика на туннельном диоде

Рис. 3.6-47. Гетеродин на туннельном диоде

Для увеличения мощности можно также включить два или большее число диодов в схему генератора (рис. 3.6-48). При этом диоды лучше всего соединять по постоянному току последовательно. Тогда напряжение на нижнем сопротивлении делителя должно быть вдвое больше, чем для одного туннельного диода, т.е. потери на верхнем плече уменьшаются. Нужно иметь ввиду, что сопротивление нижнего плеча должно обязательно состоять из двух одинаковых сопротивлений, а их средняя точка должна быть соединена по постоянному току со средней точкой двух диодов. В противном случае, устойчивая работа двух соединенных последовательно диодов невозможна. По переменному току можно соединить диоды параллельно или последовательно. В схеме приведенной на рис. 3.6-48 каждый диод подключен к отдельной обмотке. Чтобы получить наибольшую мощность, связь каждого диода с контуром следует регулировать индивидуально.

Рис. 3.6-48. Автогенератор на двух туннельных диодах

Генератор на туннельном диоде может строиться и с применением кварцевого резонатора, задающего частоту колебаний. Пример такой схемы приведен на рис. 3.6-49.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ПРИБОРОСТРОИТЕЛЬНЫЙ ФАКУЛЬТЕТ

Кафедра "Информационно-измерительная техника и технологии"

КУРСОВАЯ РАБОТА

по дисциплине: "Приёмо-передающие устройства"

Тема: ЗАДАЮЩИЙ АВТОГЕНЕРАТОР НА ТУННЕЛЬНОМ ДИОДЕ

Исполнитель: Новик С. Ф.

Руководитель: Воробей Р. И.

Реферат

Курсовая работа содержит 18 страниц, 4 рисунка, 1 приложение.

АВТОГЕНЕРАТОР, ДИОДНЫЕ АВТОГЕНЕРАТОРЫ, ТУННЕЛЬНЫЙ ДИОД, ПРИНЦИПИАЛЬНАЯ СХЕМА.

Целью курсовой работы является разработка принципиальной схемы и расчет задающего автогенератора на туннельном диоде, описание его работы, расчёт элементов, входящих в принципиальную схему

В проекте представлены: схема электрическая принципиальная задающего автогенератора на туннельном диоде и её расчет.

Введение

1. Анализ принципа действия автогенератора на туннельном диоде

1.1 Общие сведения об автогенераторах

1.2 Диодные автогенераторы

1.3 Туннельный диод

2. Разработка схемы автогенератора на туннельном диоде

3. Расчет схемы автогенератора на туннельном диоде

3.1 Выбор туннельного диода

3.2 Расчет режима диода

3.3 Расчет цепи питания

3.4 Расчет резонатора

3.5 Расчет емкости Ссв и С1

Заключение

Список использованных источников

Введение

В ходе курсовой работы была разработана и рассчитана схема задающего автогенератора на туннельном диоде.

Автогенератор -- это источник электромагнитных колебании, колебания в котором возбуждаются самопроизвольно без внешнего воздействия. Поэтому автогенераторы, в отличие от генераторов с внешним возбуждением (усилителей мощности), часто называют генераторами с самовозбуждением.

В радиопередатчиках автогенераторы применяются в основном в качестве каскадов, задающих несущую частоту колебании. Такие генераторы входят в состав возбудителя передатчика и называются задающими. Главное требование, предъявляемое к ним,-- высокая стабильность частоты. В некоторых типах передатчиков (особенно в диапазоне СВЧ) автогенераторы могут быть выходными каскадами. Требования к таким генераторам аналогичны требованиям к усилителям мощности -- обеспечивать высокую выходную мощность и КПД.

Туннельный диод -- это маломощный генераторный диод с узким р-n-переходом, активные свойства которого проявляются в широком диапазоне частот -- от постоянного тока до СВЧ.

1. Анализ принципа действия автогенератора на туннельном диоде

1.1 Общие сведения об автогенераторах

Задающие генераторы проектируют таким образом, чтобы в них возбуждались гармонические колебания. Основным элементом генератора гармонических колебаний является резонатор, главное свойство которого -- колебательный характер переходного процесса. Простейший резонатор -- это колебательный контур. Если в колебательный контур ввести энергию, то при достаточно высокой его добротности (Q " 1) возникают колебания тока, затухающие со временем. Уменьшение амплитуды колебаний объясняется потерями мощности в контуре. Таким образом, для создания автогенератора гармонических колебаний необходимо использовать резонатор с достаточно высокой добротностью и компенсировать потери.

Для выполнения последнего условия достаточно периодически добавлять в резонатор порции электромагнитной энергии синхронно с возбуждаемыми колебаниями. Источником энергии может служить постоянное электрическое поле; для преобразования его энергии в энергию колебаний требуется активный элемент (АЭ). Структурная схема автогенератора изображена на рисунке 1. Обратная связь здесь нужна для синхронизации работы АЭ колебаниями, существующими в резонаторе.

Рисунок 1 - Структурная схема автогенератора

В качестве резонаторов в диапазоне высоких частот применяют LC-контуры, кварцевые пластины; на СВЧ -- отрезки линий с распределенными параметрами, диэлектрические шайбы, ферритовые сферы и др. Активными элементами могут быть биполярные и полевые транзисторы, а также генераторные диоды -- туннельные, лавинно-пролетные, диоды Ганна и др.

Механизм работы автогенератора состоит в следующем. При включении источника энергии в резонаторе возникает переходный колебательный процесс, воздействующий на АЭ. Последний преобразует энергию источника в энергию колебаний и передает ее в резонатор. Если мощность, отдаваемая активным элементом, превышает мощность, потребляемую резонатором и нагрузкой, т. е. выполняется условие самовозбуждения, то амплитуда колебаний увеличивается. По мере роста амплитуды проявляется нелинейность АЭ, в результате рост отдаваемой мощности замедляется и при некоторой амплитуде колебаний отдаваемая мощность оказывается равной потребляемой мощности. Если этот энергетический баланс устойчив к малым отклонениям, то в автогенераторе устанавливается стационарный режим колебаний.

Автогенераторы существенно отличаются от других каскадов радиопередатчиков тем, что частота и амплитуда колебаний здесь определяются не внешним источником, а параметрами собственной колебательной системы и активного элемента.

1.2 Диодные автогенераторы

В зависимости от типа АЭ различают транзисторные и диодные автогенераторы.

Диодные автогенераторы обеспечивают стационарные колебания за счет специфических процессов в генераторных диодах, обратная связь здесь осуществляется автоматически без применения специальных элементов.

1.3 Туннельный диод

Туннельный диод - это маломощный генераторный диод с узким р-n-переходом, активные свойства которого проявляются в широком диапазоне частот - от постоянного тока до СВЧ. Это позволяет строить туннельные автогенераторы на самых различных частотах. Выходная мощность автогенераторов на туннельных диодах обычно составляет сотни микроватт. Важным достоинством диода является сохранение его свойств как активного элемента в условиях радиационного излучения.

Эквивалентная схема туннельного диода (рисунке 2а) содержит генератор тока (u а ), барьерную емкость р-л-перехода Сб (u а ), сопротивление потерь в полупроводнике и контактах rs, и индуктивность выводов Lв. Штриховой линией на рисунке 2б, показана статическая ВАХ обычного диода с р-n-переходом.

Рисунок 2. Эквивалентная схема туннельного диода (а) и статическая ВАХ генератора тока (б)

2. Разработка схемы автогенератора на туннельном диоде

1. Туннельный диод - это прибор с ВАХ N-типа, поэтому колебательная система с учетом Lв н Сб в точках подключения генератора тока iа (ua) должна на заданной частоте иметь параллельный резонанс.

Рисунок 3. Принципиальная электрическая (а) и эквивалентная (б) схемы питания туннельного диода.

2. Участок отрицательной крутизны существует при весьма малых напряжениях ua. Чтобы диод проявлял себя как активный элемент автогенератора, напряжение питания U0 должно быть в пределах uпик< U0< uвп или 0,1 < U0 < 0,6 В. Так как напряжение стандартных источников питания Еп> 1,5 В, то требуется делитель напряжения (рисунок 3 а).

3. Существование участка отрицательной крутизны не только на динамической ВАХ (как у всех активных элементов), но и на статической характеристике приводит к необходимости обеспечивать устойчивость рабочей точки по постоянному току.

Электрическая схема автогенератора на туннельном диоде. На рисунке 4 изображена одна из возможных схем такого автогенератора.

Рисунок 4. Принципиальная электрическая схема автогенератора на туннельном диоде.

Здесь R1, R2 - делитель напряжения в цепи питания;

Сбл, Lбл - элементы, блокирующие источник питания от токов высокой частоты;

С1, С2, L - элементы резонатора, задающего частоту генерации;

Ссв - емкость связи с нагрузкой. Чтобы одновременно обеспечить высокую стабильность частоты и оптимальный энергетический режим, применено неполное подключение резонатора к диоду.

3. Расчет схемы автогенератора на туннельном диоде

Расчет туннельного автогенератора состоит из 3-ёх основных этапов: 1) выбор диода; 2) расчет режима диода; 3) расчет резонатора и цепи питания.

3.1 Выбор туннельного диода

При выборе диода следует учитывать требуемую выходную мощность автогенератора. Для получения высокой стабильности частоты следует применять ослабленную связь с нагрузкой, подбирая достаточно малую емкость Ссв . Тогда мощность в нагрузке Рн ? (0,1 ... 0.2) P1 , где P 1 , -- колебательная мощность, отдаваемая диодом во внешнюю цепь.

Из теории туннельных автогенераторов следует, что максимальная колебательная мощность диода:

P 1 max ? 0,2 ,

= i пик- i вп; = u пик- u вп.

Так как =i пик; ? 0,4 В для диодов на арсенид галлия, то получим соотношение для выбора диода: i пик? 100 Рн.

3.2 Расчет режима диода

Цель расчета состоит в нахождении оптимальной проводимости нагрузки G к , постоянного напряжения U 0 , на диоде, эквивалентного сопротивления источника питания R ист . В результате расчета становятся известными амплитуда колебаний Ua 1 , колебательная P1 , и потребляемая Р0 мощность, а также электронный КПД автогенератора.

При расчете режима диода необходимо учесть условия существования стационарного режима, самовозбуждения и устойчивости по постоянному току. Нужно рассчитать зависимость действительной G а и мнимой Ва частей проводимости Ya от амплитуды колебаний Ua1 . Основной вклад в Ва дает барьерная емкость диода, т.е. Ва? wC б1 , где Сб1 -- усредненная по первой гармонике емкость Со(u а). Расчеты показывают, что значение В a слабо зависит от Ua1 , поэтому считают емкость Со постоянной, полагая Сб1 -- Сб (U 0). Расчет |Ga|(Ua) можно проводить в следующем порядке.

Рисунок 6. Нормирования ВАХ туннельного диода на арсениде галлия (а ) и зависимость | Ga |/ i пик от амплитуды напряжения (б )

1. Аппроксимируем статическую ВАХ туннельного диода подходящим аналитическим выражением.

2. Считая, что напряжение ua (t ) на диоде имеет гармоническую форму (это справедливо, если добротность контура при параллельном резонансе достаточно велика), подставляем в формулу, аппроксимирующую ВАХ, напряжение

ua (f) = U0+Ua1cos wt

и находим зависимость i a(t ) .

3. Раскладывая функцию i a(t ) в ряд Фурье, находим амплитуду первой гармоники тока диода Ia 1 .

4. Вычисляем

|G a | = Ia 1/ Ua 1 .

5. Повторяем расчеты для различных Ua 1 и U0 . В результате получаем семейство зависимостей | Ga |(Ua 1) при U0 в качестве параметра.

Так как ВАХ туннельных диодов, изготовленных из одного материала, идентичны и отличаются лишь значением пикового тока 1"пяк" то при расчетах можно использовать некоторую среднюю характеристику, нормированную к i пик, которая справедлива для определенного полупроводникового материала (рисунок 6).

Как показали расчеты по изложенной методике и подтвердили эксперименты, оптимальный режим получается при следующих параметрах автогенератора: U0 = 0,37В; | Ga |/ i пик =1,2 В-1. При этом амплитуда колебаний Ua 1 = 0,33 В, а режим возбуждения при U0 = const оказывается жестким.

3.3 Расчет цепи питания

Цепь питания диода выполняет следующие основные функции: 1) снабжает диод энергией, необходимой для генерации электромагнитных колебаний; 2) обеспечивает оптимальное смещение рабочей точки на статической ВАХ.

Чтобы получить оптимальный режим диода при мягком возбуждении колебаний, целесообразно, как и в случае транзисторных автогенераторов, использовать автоматическое смещение. Оно образуется при протекании постоянного тока диода I 0 через параллельно соединенные резисторы R 1 и R 2 . Можно так выбрать сопротивления R 1 и R 2 , что в момент возбуждения колебаний постоянное напряжение на диоде будет соответствовать мягкому возбуждению, а в стационарном режиме -- оптимальному значению U0 = 0,37 В. Возможность такого выбора объясняется тем, что при мягком возбуждении колебаний постоянный ток I 0(0)(он несколько меньше i пик ) оказывается больше, чем ток I 0 в стационарном режиме. При наличии колебаний ток I 0 уже не определяется статической ВАХ диода, а соответствует некоторой кривой, зависящей от нагрузки G H (заштрихованная область на рисунок 6, а). Это объясняется тем, что временная зависимость ia (t ) негармоническая.

В стационарном режиме колебаний постоянное напряжение Uо окажется равным оптимальному значению 0,37 В в том случае, когда изменение напряжения на сопротивлении Rист при уменьшении постоянного тока I0 до I0 равно разнице постоянных напряжений на диоде в оптимальном режиме и в момент возбуждения. Отсюда получаем (рисунок 6, а):

Rист?(U0-uпик)/(iпик-I0) (1)

В режиме с максимальным КПД:

Из рисунка 6, видно, что в оптимальном режиме 0.3, поэтому Rист?0,4B/iпик; Тогда: электромагнитный генераторный диод туннельный

0,37 В + 0,27 А *0,4 Ом= 0,47 В (3)

= (0,4Ом * 1,5 В)/ 0,47 В = 1,27 Ом (4)

) = 0,4 Ом * 1,5 В / (1,5 В - 0,47 В) = 0,58 Ом (5)

3.4 Расчет резонатора

Выбираем индуктивность контура L = 5 мкГн с добротностью QL = 110. Считаем, чт

о Q 0 QL .

Вычислим параметры элементов резонатора:

с = щ р L = 2 рf pL = 2 * 3,14 * 0,5 Гц * 106 * 5 * 10-6 Гн = 15,7 Ом (6)

С У = = ? 2072 пФ (7)

Rp = с Q 0 = 15,7 Ом * 110 1,72 кОм (8)

C"1= C?/с = 2072 пФ/15,7 Ом = 132 пФ (9)

C2 ? C"1 ? 132 пФ (10)

3.5 Расчет емкости Ссв и С1

Примем Rн? 300 Ом, тогда:

Ссв = = 60 пФ (11)

60 пФ (12)

132 - 60 = 72 пФ (13)

Сопротивление входной цепи должно быть намного больше цепи резонатора (). Примем n=10, тогда:

Lбл=10L = 10 * 5 * 10-6 = 50 мкГн (14)

Cбл=Ссв/10 = 60 * 10-12 / 10 = 5 пФ (15)

Заключение

В ходе выполнения курсовой работы было приведено описание работы автогенератора на туннельном диоде, была разработана принципиальная схема, произведён расчёт элементов, входящих в принципиальную схему.

Список использованных источников

1. Петров Б. Е., Романюк В. А., Радиопередающие

устройства на полупроводниковых приборах: Учеб. пособие для радиотехн. спец. вызов/ М.: Высш. шк., 1989 - 232 с.

2. Справочник по электрическим конденсаторам/ М. Н. Дьяконов, В. И. Карабанов, В. И. Присняков и др.; Под общ. ред. И. И. Четверткова и В. Ф. Смирнова. - М.: Радио и связь, 1983 - 576 с.

3. Резисторы: Справочник/ В. В. Дубровский, Д. М. Иванов, Н. Я. Пратусевич и др.; Под ред. И. И. Четверткова и В. М. Терехова. - 2 изд., - М.: Радио и связь, 1991 - 528 с.

Размещено на Allbest.ru

Подобные документы

    Особенности метода решения уравнения Пуассона, описывающего процессы, происходящие в диоде, методом распространения вектора ошибки. Пример решения разностного уравнения. Программа расчета потенциала в определённом узле сетки с учётом граничных условий.

    дипломная работа , добавлен 29.11.2011

    Диод Шотки как полупроводниковый диод, выпрямительные свойства которого основаны на использовании выпрямляющего электрического перехода между металлом и полупроводником. Структура данного устройства, сферы и особенности его практического применения.

    реферат , добавлен 29.04.2011

    Механизм действия полупроводникового диода - нелинейного электронного прибора с двумя выводами. Работа стабилитрона - полупроводникового диода, вольтамперная характеристика которого имеет область зависимости тока от напряжения на ее обратном участке.

    презентация , добавлен 13.12.2011

    Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Конструкция асинхронного двигателя с фазным ротором. Снижение тока холостого хода. Магнитопровод и обмотки. Направление электромагнитных сил. Генераторный режим работы.

    презентация , добавлен 09.11.2013

    Единый подход к изучению колебаний различной физической природы. Характеристика гармонических колебаний. Понятие периода колебаний, за который фаза колебания получает приращение. Механические гармонические колебания. Физический и математический маятники.

    презентация , добавлен 28.06.2013

    Особенности колебаний, имеющих физическую природу. Характеристика схемы пружинного маятника. Исследование колебаний физических маятников. Волновой фронт как геометрическое место точек, до которых доходят колебания к рассматриваемому моменту времени.

    курсовая работа , добавлен 01.11.2013

    Строение, электрические свойства полупроводников и их отличия от металлов. Собственная и примесная проводимость. Полупроводниковые приборы: диод, фотодиод, транзистор, термистор. Коэффициент тепловой связи. Статические вольт-амперные характеристики.

    курсовая работа , добавлен 15.02.2014

    Общие сведения об измерительных источниках оптического излучения, исследование их затухания. Основные требования к техническим характеристикам измерителей оптической мощности. Принцип действия и конструкция лазерных диодов, их сравнительный анализ.

    дипломная работа , добавлен 09.01.2014

    Понятие диодов как электровакуумных (полупроводниковых) приборов. Устройство диода, его основные свойства. Критерии классификации диодов и их характеристика. Соблюдение правильной полярности при подключении диода в электрическую цепь. Маркировка диодов.

    презентация , добавлен 05.10.2015

    Напряжение тока и сопротивление диода. Исследование вольтамперной характеристики для полупроводникового диода. Анализ сопротивления диода. Измерение напряжения и вычисление тока через диод. Нагрузочная характеристика параметрического стабилизатора.

Туннельный диод – это маломощный генераторный диод с узким р-п- переходом, активные свойства которого проявляются в широком диапазоне частот – от постоянного тока до СВЧ. Это позволяет строить туннельные автогенераторы на самых различных частотах. Выходная мощность автогенераторов на туннельных диодах состовляет сотни микроватт. Важным достоинством диода является сохранение его свойств как активного элемента в условиях радиоционного излучения.

Эквивалентная схема туннельного диода

Содержит генератор тока, барьерную емкость р-п-перехода, сопротивление потерь в полупроводниках контактах и индуктивность выводов. Штриховой линией показана статическая ВАХ обычного диода с р-п переходом.

Особенности автогенератора на туннельных диодах. При выборе и расчете схемы туннельного автогенератора нужно учитывать следующее.

1. Туннельный диод – это прибор с ВАХ N –типа, поэтому колебательная система с учетом L и С в точках подключения генератора тока должна на заданной частоте иметь параллельный резонанс

2. Участок отрицательной крутизны существует при весьма малых напряжениях U. Чтобы диод проявлял себя как активный элемент автогенератора, напряжение питания U должно в пределах uпик

3. Существование участка отрицательной крутизныне только на динамической ВАХ(как у всех активных элементах), но и на статической характеристике приводит к необходимости обеспечивать устойчивость рабочей точки по постоянному току.

Режим работы туннельного диода по постоянному току. Учитывая особенности туннельных автогенераторов, посмотрим, как следует выбирать и расмсчитывать режим диода по постоянному току.

Для расчета U 0 и I 0 U 0 =E п -I 0 R ист, где E п =E п R 2 /(R 1 +R 2)/

Допустим что в результате случайной флуктуации напряжение на диоде U изменилось на величину U. Режим по постоянному току устойчив, если возникающий переходной процесс возвращает рабочуб точку в исходное положение. Проведя анализ устойчивости, получим следующее условие устойчивости режима диода по постоянному току:

R ист <1/|G 0 |

где G 0 =dI/dU – крутизна статической ВАХ туннельного диода в рабочей точке.

Применяя данное условие к вариантам решений Получим, что рабочая точка 1 на рис 4.25, а устойчива, а на рис 4.25 б неустойчива. Практически устойчивость рабочей точки на участке отрицательной икрутизны ВАХ обеспечивается применением достаточно малых сопротивлений R 2 /

В интернете сегодня можно встретить огромное количество схем радиопередающих устройств. Эти компактные передатчики в простонародье получили название жучок, устройство для прослушки.

В основном известные конструкции жучков повторяется начинающим любителем, но без определенного опыта, собрать и испытать профессиональный микрофон очень трудно, поскольку жучки достаточно трудно настраиваются. Иными словами в домашних условиях очень трудно собрать стабильный жучок с дальностью действия более 200 метров, если конечно устройство работает не на спутниковом диапазоне.

Сегодня будет рассмотрена конструкция радиожучка, где в качестве генератора используется туннельный диод.

В интернете конструкций таких жучков не очень много, встречаются всего пара схем жучков на туннельных диодах, нарушим традицию стандартных схем и рассмотрим новый вариант строения передатчика без транзисторов!

Вышесказанное не совсем верно, поскольку после испытания схемы, стало понятно, что без транзистора все-таки не обойтись, правда, тут транзистор применен только для усиления сигнала от микрофона.

Контур намотан на пластмассовой оправе с диаметром 5 мм, содержит 7 витков (для FM диапазона), провод с диаметром 0,6-1мм.

Дальность жучка небольшая, всего 20-30 метров и то при точной настройке. Генератор начинает работать даже тогда, когда напряжение 0,5-0,6 вольт, стандартное напряжение -1,5 вольт, выше подавать не стоит. Ток потребления всего 1,5-2 мА! одной пальчиковой батарейки может хватить на пол года.
Жучок пригоден только для "ближних боев", следить за соседним домом и т.п., это будет вашим третьим ухом.

Не смотря на достаточно простую конструкцию, стабильность на достаточно высоком уровне, сплава частоты почти не наблюдал во время опытов.
Чувствительность микрофона до 4-х метров, сам микрофон использован от гарнитуры мобильного телефона.

Основные параметры жучка:
Напряжение питания 0.5...2 Вольт
Дальность действия - 30 метров
Рабочая частота - 88-108 МГц

Транзистор с резистором на 520 Ом в коллекторной цепи образует делитель напряжения, ее рабочая точка задается подстроечным резистором 68 к, резистор регулируют так, чтобы на коллекторе транзистора напряжение было 0,2-0,3 вольт, таким образом обеспечивая нормальное напряжение для питания генератора, это второе предназначение транзистора.

Антенна - кусок многожильного провода с длиной 20 см, при исключении последнего, дальность действия жучка спадает до 5-6 метров.

Туннельный диод можно использовать типа АИ201/301 или из импортного интерьера - 1N3713

Главное достоинство - компактные размеры устройства и низковольтное питание, при сборке на смд компонентах, всю конструкцию можно поместить в пуговицу от плаща.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Биполярный транзистор

S9014-B

1 В блокнот
D Туннельный диод 1N3713 1 В блокнот
Конденсатор 1 пФ 1 В блокнот
Конденсатор 12 пФ 1 В блокнот
Конденсатор 1000 пФ 1 В блокнот
Конденсатор 0.1 мкФ 2 В блокнот
Резистор

520 Ом

1 В блокнот
Резистор

1.5 кОм

1 В блокнот
Подстроечный резистор 68 кОм 1 В блокнот
Микрофон 1

Наиболее просто с применением туннельных диодов строятся схемы автогенераторов. Так как туннельный диод представляет собой двухполюсник с отрицательным сопротивлением, устойчивым по напряжению, то при подключении к нему параллельного колебательного контура он может генерировать. При этом отрицательное сопротивление диода будет компенсировать потери, и в контуре могут возникнуть и поддерживаться незатухающие колебания. Обычные низкочастотные туннельные диоды хорошо работают на частотах, равных единицам мегагерц.

Более высокочастотные диоды, в которых уменьшена емкость перехода и индуктивность выводов, генерируют на частотах тысячи мегагерц. Однако из-за небольших величин участка вольтамперной характеристики диода с отрицательным сопротивлением мощность, отдаваемая им на любых частотах, составляет доли мВт. Чтобы форма генерируемых колебаний не искажалась, как правило, применяют частичное подключение диода к контуру генератора. В этом случае сопротивление потерь, приведенное к выводам диода, должно быть равно его отрицательному сопротивлению. В реальных схемах приведенное сопротивление потерь выбирают больше отрицательного. сопротивления туннельного диода с тем, чтобы гарантировать надежное возбуждение генератора при изменении температуры, питающего напряжения и частоты.

Учитывая, что параллельное сопротивление потерь в реальных колебательных контурах значительно превышает сопротивление туннельного диода, отвод приходится делать от незначительной части витков контура (рис. 1). На внутреннем сопротивлении источника смещения будет выделяться часть колебательной мощности, поэтому оно должно быть как можно меньше.


Рис. 1

Обычно туннельные диоды питаются от делителя напряжения, что приводит к неэкономному расходованию мощности питания. Действительно, для германиевых диодов напряжение смещения в режиме генерации равно 0,1-0,15 в, а минимальное напряжение подавляющего большинства химических источников тока составляет 1,2-2 В, поэтому и необходимо применять в цепи питания делители напряжения. При этом примерно 80-90% всей потребляемой мощности рассеивается на делителе. Исходя из соображений экономичности, для питания туннельных диодов целесообразно применять источники с возможно более низким напряжением. Выходное сопротивление делителя напряжения выбирают в пределах 5-10 Ом, и только в устройствах, где требуется наибольшая экономичность его повышают до 20-30 Ом. Отрицательное сопротивление туннельного диода должно превышать сопротивление делителя в 5-10 раз. Шунтировать столь малые сопротивления конденсаторами для уменьшения потерь высокочастотной энергии нецелесообразно, так как в ряде случаев это может привести к неустойчивой работе генератора, особенно, если режим его подбирался по максимуму отдаваемой мощности.

Отрицательное сопротивление туннельного диода сильно зависит от положения рабочей точки, так что при изменении питающего напряжения на 10% нормальная работа генератора может полностью нарушиться. Поэтому при питании диодов от химических источников тока - батарей, аккумуляторов, обеспечить их стабильную работу весьма трудно. Наиболее целесообразно питать их от окисно-ртутных элементов, напряжение которых незначительно меняется в процессе работы, а в ряде случаев приходится использовать предварительно стабилизированное напряжение или применять в делителе нелинейные сопротивления -в верхнем плече, стабилизирующие ток, а в нижнем - напряжение. Так, если в схеме автогенератора (рис. 2, а) вместо сопротивления R2 применить германиевый диод Д11 в прямом включении, как это показано на рис. 2, б, стабильность работы генератора улучшится и при изменении напряжения питания от 1,5 до 1 в никаких регулировок не потребуется.


Рис. 2

В приведенных схемах автогенераторов на частоту 465 кГц катушка L1 намотана на 4-секционном полистироловом каркасе диаметром 4 мм с сердечником из феррита Ф-1000 диаметром 2,8 и длиной 12 мм. Обмотка катушки содержит 220 витков провода ПЭВ 0,13 с отводом от 18 витка. Напряжение высокой частоты на контуре составляет 1 Вэфф.

Все упомянутые выше способы стабилизации несколько усложняют схемы, а в ряде случаев и увеличивают потребляемую мощность, поэтому широкого применения они не нашли. В аппаратуре туннельные диоды чаще всего применяются совместно с транзисторами. Известно, что у транзистора ток эмиттера сравнительно мало зависит от напряжения питания коллектора, особенно если смещение транзистора стабилизировано каким-либо способом. Поэтому, при питании диодов эмиттерным током транзистора, можно получить выигрыш не только в стабильности, но и в экономичности. Последняя повышается здесь из-за того, что потери на верхнем плече делителя устраняются, а дополнительная мощность, потребляемая туннельным диодом, невелика.

Помимо генераторов, настроенных на фиксированную частоту, туннельные диоды можно применить и в диапазонных генераторах. Правда, при этом приходится более тщательно подбирать связь диода с контуром, чтобы во всем перекрываемом диапазоне поддержать амплитуду колебании и мощность в нагрузке на заданном уровне. Примером такого использования туннельного диода может служить схема гетеродина для супергетеродинного приемника, описанного в журнале "Радио" № 5 за 1962 г. Схема гетеродина получается при этом даже проще, чем на транзисторе (рис. 3).


Рис. 3

Общее число витков в катушке L1 сохраняется, а для связи с туннельным" диодом поверх L1 со стороны ее заземленного конца наматывается обмотка L2, содержащая 10 витков провода ПЭЛШО 0,15. Обмотка связи с преобразователем L3 остается примерно прежней, но для наибольшей чувствительности число витков нужно заново подобрать. Емкости конденсаторов C1 и С2 остаются без изменения, Питается туннельный диод от общего источника. В этом случае сопротивление R2 должно быть равно 1,2 ком. Туннельный диод нужно выбрать с током максимума не более 1,5 мА. Более рационально для питания диода применить упомянутую выше схему стабилизации с помощью транзистора. Для этого усилитель НЧ переделывают по схеме, приведенной на рис. 4. Между транзистор рами усилителя НЧ вводится связь по постоянному току. Смещение на базу транзистора Т1 снимается с эмиттера транзистора Т2 через цепочку R4Д1, и сопротивления R2, R3. Возникающая при этом отрицательная обратная связь по току поддерживает ток эмиттера, а значит, и напряжение на сопротивлениях R2 и R3, почти постоянным при снижении питающего напряжения на 25-30% от номинальной величины (величину питающего напряжения лучше повысить до 9 В).


рис. 4

Для питания туннельного диода используется напряжение 2 в, подаваемое на делитель через сопротивление R2 (рис. 3), которое в этом случае берется равным 430 Ом. Налаживание начинают с проверки того, как изменяется напряжение на эмиттере транзистора Т2 при уменьшении питающего напряжения с 6 до 4,5 В или с 9 до 6 В. Если при этом напряжение изменится не более, чем на 5-10%, то установив напряжение питания равным 5,2 В (или 7,5 В при 9 В), переходят к настройке генератора. Для этого ротор переменного конденсатора С2 ставят в среднее положение и, регулируя величины сопротивлений R1 или R2 (рис. 3), добиваются максимальной амплитуды колебаний. Затем проверяют равномерность генерации по всему диапазону. Если в каких-либо его участках колебания срываются, следует на несколько витков увеличить обмотку катушки L2 и вновь проверить равномерность генерации при перестройке. Закончив настройку гетеродина, подбирают число витков обмотки связи гетеродина с преобразователем L3 до получения оптимальной чувствительности.

При проектировании генераторов на туннельных диодах следует стремиться получить максимальную добротность колебательного контура, с тем, чтобы увеличить мощность, отдаваемую в нагрузку. Для увеличения мощности можно также включить два или большее число диодов в схему генератора. При этом, как следует из рассмотрения энергетических соотношений, диоды выгодно соединять по постоянному току последовательно.. Тогда напряжение на нижнем сопротивлении делителя будет вдвое больше, чем для одного туннельного диода, и потери на верхнем плече уменьшаются. Нужно иметь ввиду, что сопротивление нижнего плеча должно обязательно состоять из двух одинаковых сопротивлений, а их средняя точка должна быть соединена по постоянному току со средней точкой двух диодов(рис.5). В противном случае, устойчивая работа двух последовательно соединенных диодов невозможна. По переменному току можно соединить диоды параллельно или последовательно. В схеме, приведенной на рис. 5 каждый диод подключен к отдельной обмотке. Чтобы получить наибольшую мощность, связь каждого туннельного диода с контуром следует регулировать индивидуально.


рис. 5

Можно использовать туннельные диоды и в схемах апериодических усилителей. Однако, как указывается в литературе, такие апериодические усилители в диапазонах длинных и средних волн оказываются мало практичными из-за трудности в разделении нагрузки и источника сигнала. Нужно учесть и то, что транзисторы при сравнимом потреблении мощности питания обладают большим усилением в реальных схемах по сравнению с туннельными диодами.

Резонансные усилители на туннельных диодах строить сравнительно несложно. Они могут быть выполнены, например, по схеме автогенератора, в котором коэффициент обратной связи недостаточен для возбуждения колебаний. Таким схемам присущи все недостатки регенеративных усилителей: нестабильность порога регенерации, возможность возбуждения при изменении нагрузки, сужение полосы пропускания при повышении усиления. Однако такие усилители могут работать достаточно устойчиво, если не стремиться получить от них максимальное усиление. Схема с таким применением туннельного диода приведена на рис. 6. На рисунке показана схема входной части приемника прямого усиления с ферритовой антенной. Известно, что для согласования сопротивления контура антенны с входным сопротивлением транзистора, коэффициент трансформации трансформатора, образованного обмотками катушек L1 и L2 делается много меньше единицы.


Рис. 6. Верхняя обкладка конденсатора C1 должна быть заземлена.

Это приводит к тому, что напряжение сигнала на базе транзистора оказывается в 15- 20 раз меньше, чем напряжение на контуре L1C1. В схеме, показанной рис. 6 коэффициент связи выбран значительно больше обычного и отвод к базе транзистора Т1 сделан от 1/5 общего числа витков катушки L1. В этом случае контур L1C1 оказывается сильно шунтированным, полоса его расширяется и чувствительность приемника падает. Однако при подключении туннельного диода к дополнительной обмотке L3 контур частично "разгружается", его затухание и полоса пропускания возвращаются к нормальной величине. Таким способом удается получить выигрыш в чувствительности приемника в 4-5 раз. Число витков обмотки L3 выбирается с таким расчетом, чтобы затухание контура компенсировалось не полностью, и усилитель не возбуждался. Однако, чтобы получить максимальную чувствительность, нужно подойти к порогу возбуждения как можно ближе, поэтому смещение туннельного диода сделано регулируемым. Обмотка катушки L1 содержит 200 витков провода ПЭЛШО 0,15, намотанных в один слой виток к витку на ферритовом стержне длиной 110 мм, диаметром 8,4 мм с отводом от 44 витка. Обмотка катушки L3 содержит 8-10 витков провода ПЭЛШО 0,15, она намотана вблизи заземленного конца катушки L1. Недостатком предложенной схемы является то, что коэффициент перекрытия входной цепи уменьшается, так как из-за увеличенного коэффициента связи сильней будет сказываться входная емкость транзистора T1. Кроме того, к емкости контура добавится пересчитанная емкость туннельного диода. Поэтому, если требуется достаточно большое перекрытие, целесообразно туннельный диод применять с минимальной емкостью.

Более выгодно применять регенеративные усилители на фиксированную частоту, например в усилителе ПЧ супергетеродина (рис. 7). Для этого на один из контуров ПЧ наматывают дополнительную обмотку для туннельного диода. Смещение диода лучше сделать стабилизированным. Это позволит подойти достаточно близко к порогу регенерации и получить выигрыш в усилении в 8-10 раз. Нужно учитывать, что полоса пропускания усилителя ПЧ резко сужается, если включение туннельного диода не было заранее предусмотрено. В ряде случаев при подключении диода усилитель может возбудиться, хотя коэффициент связи недостаточен для генерации. Это происходит потому, что коэффициент усиления каскада с подключенным туннельным диодом становится больше максимальной устойчивой величины.


рис. 7

Экспериментируя с туннельными диодами, нужно избегать бросков тока и напряжения, иначе диод может выйти из строя. Подключать и отключать диод следует только при выключенном питании.

Литература

  1. С. Г. Мадоян, Ю. С.Тиховцев. А. Ф. Трутко - Туннельный диод. Сборник "Полупроводниковые приборы и их применение" под редакцией Федотова Я. А. Вып. 7.
  2. К. С. Ржевкин "Туннельный диод" Массовая радиобиблиотека" выпуск 452, Госэнергоиздат, 1962 г.
  3. Акчурин Э. А., Стыблик В. А. Генераторы на туннельных диодах с повышенной мощностью, Радиотехника, 1963 г. т. 18, № 11.
  4. Williams, Hamilton How to make tunnel diodes even more useful, Electronics, June 7. 1963, V 36. № 23.

Читайте и пишите полезные