Технология сварки меди и ее сплавов. Нюансы образования трещин

Титан и его сплавы. Титан и его сплавы в настоящее время широко используются в специальных отраслях техники. Температура плавления титана 1680°С, плотность 4,5 г/см 3 . Титан имеет низкотемпературную α-фазу и высокотемпературную β-фазу.

Титан имеет высокое химическое сродство к кислороду, азоту и водороду: интенсивное насыщение его водородом начинается уже при температуре 250°С, кислородом - при 400°С и азотом - при 600°С. С повышением температуры активность титана резко возрастает. Скорость взаимодействия титана с кислородом в 50 раз выше, чем с азотом. Кислород и азот легко растворяются как в α-фазе, так и в β-фазе титана и являются сильными стабилизаторами α-фазы. Титан является единственным элементом, способным гореть в азоте. Водород стабилизирует β-фазу титана и образует с титаном твердые растворы и гидрид TiH 2 .

При охлаждении титана ниже 100- 150°С происходит выпадение гидрида (γ-фазы), что является причиной образования холодных трещин при сварке. При медленном охлаждении γ-фаза выделяется в виде тонких пластинок, а при закалке - в виде высокодисперсных частиц.

Азот и кислород резко повышают прочность титана и снижают его пластичность. Водород в титане влияет главным образом на его склонность к разрушению. Одним из наиболее важных свойств титана является его высокая коррозионная стойкость во многих агрессивных средах. Титан обладает высокой прочностью при нормальной и повышенной температурах.

Основными трудностями при сварке титана являются:

высокая его активность по отношению к кислороду, азоту и водороду как в расплавленном, так и в твердом состоянии;

образование хрупкой α-фазы при охлаждении;

высокая склонность к росту зерна β-фазы и перегреву.

Для получения качественного сварного соединения титана в нем ограничивают содержание азота, кислорода, водорода и углерода; с этой целью при сварке защищают металл шва и околошовной зоны инертными газами. Для защиты шва и околошовной зоны от воздуха применяют горелки с козырьком. Корень шва защищают плотным поджатием кромок свариваемых деталей к медной или стальной подкладке и подачей инертного газа в подкладку, изготовленную из пористого материала.

Механические свойства и структуру металла шва и околошовной зоны можно регулировать выбором наиболее рациональных режимов и технологии сварки, а также последующей термической обработкой. Аргонодуговую сварку титана в инертных газах выполняют в среде аргона высшего и 1-го сортов постоянным током прямой полярности. При сварке сосудов или труб инертный газ подводят внутрь изделия. Для сварки деталей из титана применяют герметичные камеры, заполненные инертным газом.

Вопросы для самопроверки

1. Какими способами можно сваривать медь?

2. Как влияют окись и закись меди на ее свариваемость?

3. В чем заключаются трудности сварки алюминия, никеля, титана?

4. Каковы причины появления пор при сварке меди, алюминия и титана?

Основными трудностями при сварке этих сталей являются:

– конструктивные особенности сварных соединений;

– необходимость обеспечения свойств сварного соединения, близких или равных свойствам основного металла в течение длительного времени эксплуатации (10–15 лет);

– разупрочнение в зоне термического влияния;

– склонность металла шва и ЗТВ сварного соединения к образованию ХТ.

1. Большинство сварных соединений из жаропрочных сталей характеризуется наличием концентратов напряжений, многослойных швов, остающихся подкладок, больших толщин и т.п. (рис. 31).

Рис. 31. Сварные соединения труб с трубными досками (а),

стыковые соединения труб (б) и соединение патрубка с корпусом (в)

При сварке труб с трубными досками, патрубков и труб в корне шва существует конструктивный концентратор в виде непровара. При многослойной сварке происходит нарастание пластической деформации, ширина зоны которой в 2...3 раза превышает ЗТВ. Средняя остаточная пластическая деформация оценивается величиной 0,5...1,7 %.

Эти и другие факторы обусловливают наличие в сварных соединениях этих сталей остаточных сварочных напряжений и т.п. Снизить влияние данных факторов на работоспособность соединения можно путем тщательного выбора и применения технологических параметров сварки (режим, материалы, порядок наложения швов и т.п.).

2. В условиях длительной эксплуатации при Т = 450...600 °С возможно развитие диффузионных процессов между основным металлом и металлом шва.

В первую очередь, это относится к углероду, обладающему высокой диффузионной подвижностью. Миграция углерода может наблюдаться даже при небольшом различии в легировании их карбидообразующими элементами. Образование в процессе эксплуатации обезуглероженной (ферритной) прослойки приводит к снижению прочности и пластичности сварных соединений и к локальному разрушению. В связи с этим сварочные материалы должны обеспечивать химический состав металла шва, близкий к основному металлу.

В отдельных случаях при необходимости отказаться от подогрева и термической обработки используют сварочные материалы, обеспечивающие получение металла шва на никелевой основе. Диффузионная подвижность элементов в сплавах на никелевой основе при 450...600 °С значительно меньше, чем в сталях перлитного класса.

3. Разупрочнение в ЗТВ обусловлено влиянием термического цикла сварки или термообработки сварного соединения на термически обработанный основной металл (нормализации с последующим отпуском). В ЗТВ, где металл был нагрет в интервале Ас 1 –температура отпуска стали, возникают участки разупрочнения. При этом длительная прочность соединения монет быть снижена на 15...20 % по сравнению с основным металлом. Степень разупрочнения зависит не только от режимов термообработки, но и от параметров процесса сварки. Чем больше величина погонной энергии сварки, тем больше зона разупрочнения.

Разупрочнение металла околошовной зоны могло бы быть устранено объемной термической обработкой, но она ограничивается габаритными размерами печей и другими трудностями. Для уменьшения зоны разупрочнения сварку осуществляют узкими валиками без поперечных колебаний на оптимальных режимах.

4. Холодные трещины – хрупкие разрушения жаропрочных перлитных сталей, возникающие в процессе сварки (или после неё).

Причинами их появления являются образование метастабильных структур (троостита, мартенсита) в участках ЗТВ, нагретых выше Ас 1 , охрупчивание сварных соединений под влиянием водорода, действия "силового" и "масштабного" факторов.

Образование закалочных структур в сварном соединении определяется системой легирования сталей и скоростью охлаждения при сварке. Так, хромомолибденовые стали менее склонны к закалке, чем хромомолибденованадиевые.

Температура плавления меди 1083°С

Марка

Свариваемость

Технологические особенности сварки

Медь катодная

Электродная проволока Бр.КМц 3-1; МНЖКТ-5-1 -0,2-0,2; Бр.ОЦ 4-3; Бр.ОЦ 4-3; БР.Х 0,7

При толщине более 8-10 мм необходим предварительный подогрев до 200-300°С

М00к, М0к, М1к

Хорошая

Медь раскисленная

Mlp, М2р, МЗр

Медь рафинированная

Хорошая

Бронзы оловянные литейные

Электродная проволока той же марки, что и основной металл

При толщине более 10-15 мм необходим предварительный подогрев до 500-600°С

Защитные газы Ar, Не, N 2

Бр03Ц12С5, Бр05Ц5С5, Бр08Ц4, Бр010Ф1, Бр010Ц2

Удовлетворительная

Бр03Ц7С5Н1, Бр04Ц7С5, Бр010С10

Бронзы безоловянистые литейные

БрА9Мц2Л, БрА10ЖЗМц2, БрА11Ж6Н6, БрА7Мц15Ж3Н2ц2

Удовлетворительная

Бронзы деформируемые

Бр0ф7-0,2, БрХ1, БрКМц3-1, БрБ2

БрАМц9-2, БрАЖН9-5-2, БрАЖ9-4, БрСр1

Удовлетворительная

БрА5, БрА7

Латуни деформируемые

Электродная проволока Бр.ОЦ 4-3; Бр.КМц 3-1; ЛК62-0,5; ЛК80-3; ЛМц59-0,2

При толщине более 12 мм необходим предварительный подогрев до 300-350°С

JI96, ЛА77-2, ЛК80-2

ЛМцС58-2, ЛС3, Л062-1

Удовлетворительная

ЛС59-1, ЛС60-1

Медь и сплавы на ее основе - бронзы, латуни, медно-никелевые сплавы качественно свариваются способом MIG/MAG в инертных газах.

Трудности при сварке

Высокая теплопроводность меди (в 6 раз выше, чем у железа) осложняет сварку соединений с несимметричным теплоотводом;

Большая жидкотекучесть (в 2--2,5 раза выше, чем у стали) затрудняет сварку вертикальных и потолочных швов;

Интенсивное окисление с образованием закиси меди (Cu 2 О), хорошо растворяемой в расплавленном металле, приводит к образованию трещин;

Активная способность меди поглощать газы (кислород и водород) при расплавлении приводит к пористости шва и горячим трешинам

Большой коэффициент линейного расширения меди (в 1,5 раза выше чем у стали) влечет та собой значительные деформации и напряжения

Подготовка к сварке

Разделку меди и ее сплавов на мерные заготовки можно выполнять шлифовальной машинкой, труборезом, на токарном или фрезерном станке, а также плазменно-дуговой резкой.

Кромки под сварку подготавливают механическим способом. Для меди толщиной 6-18 мм рекомендуются V- и X-образные разделки.

Свариваемые детали и присадочную проволоку очищают от окислов и загрязнений до металлического блеска и обезжиривают. Механическую зачистку кромок выполняют наждачной бумагой, металлическими щетками и т.д. Использовать наждачную бумагу и абразивный камень с крупным зерном не рекомендуется.

Главное при сварке меди - защита сварочной ванны от кислорода. Она достигается при помощи раскисления фосфором, алюминием и серебром. Поэтому следует использовать электродную проволоку, легированную этими раскислителями.

Свариваемые кромки и присадочную проволоку можно очищать травлением в растворе, состоящем из:

  • 75 см 3 /л HNO 2 ;
  • 100см 3 /л H 2 SO 4:
  • 1 см 3 /л НСl

с последующей промывкой в воде и щелочи и сушкой горячим воздухом.

Предварительный подогрев конструкций с толщиной стенки 10-15 мм возможен газовым пламенем, рассредоточенной дугой или другими способами.

Сборку стыков под сварку ведут либо в приспособлениях, либо с помощью прихваток. Зазор в стыкуемых заготовках соблюдают одинаковым на всем протяжении. Прихватки должны быть минимального сечения, чтобы в процессе сварки их можно было переплавить. Поверхность прихваток необходимо очистить и осмотреть, чтобы на них не было горячих трещин. При сварке в нижнем положении используют графитовые подкладки или медные пластины, охлаждаемые водой.

Выбор параметров режима сварки

Плавящимся электродом в защитных газах эффективнее всего сваривать медь толщиной не менее 6-8 мм. Сварку ведут на постоянном токе обратной полярности.

Медь хорошо сваривается плавящимся электродом в аргоне, азоте, в смеси аргона с азотом и в гелии. Из-за высокой теплопроводности меди для получения надежного провара в начале сварки и хорошего сплавления кромок детали подогревают до 200-500°С. При сварке в аргоне подогрев необходим при толщине металла более 4,5 мм, а в азоте - более 8 мм

Одним из важнейших параметров режима сварки меди плавящимся электродом является длина дуги. Шов качественно формируется при длине дуги 4-5 мм.

Стыковые соединения сваривают на подкладных элементах. Импульсно-дуговая сварка (ИДС) в аргоне дает возможность выполнять вертикальные и потолочные швы, позволяет сваривать тонкий металл. При сварке в азоте процесс идет с короткими замыканиями (КЗ) с повышенным разбрызгиванием или крупнокапельным переносом (КР)

Техника сварки

Для повышения стойкости металла шва к образованию горячих трещин рекомендуются проволоки Бр.АЖНМц 8,5-4-5-1,5; Бр.МцФЖН 12-8-3-3; ММц40, Механические свойства сварных соединений в этом случае соответствуют свойствам основного металла.

Ориентировочные режимы сварки меди в нижнем положении

Вид соединения

Размеры, мм

Процесс сварки

Сварочный ток, А

Напряжение на дуге, В Скорость сварки, м/ч Диаметр электрода, мм Вылет электрода, мм Расход газа, л/мин

ИДС
КЗ

80-110
80-110

18-20
18-20

0,8-1,2
0,8

10-14
10-12

ИДС
КЗ
КЗ

Ar
N 2
Ar

140-210
140-200
140-200

19-23
20-25
19-23

25-35
25-35
25-30

0,8-1,6
0,8-1,2
0,8-1,2

10-18
10-14
10-14

8-10
8-9
8-10

КЗ
СТР
ИДС

N 2
Ar
Ar

250-320
250-320
250-320

24-27
23-26
23-28

22-28
20-25
20-25

1-1,4
1-1,6
1,2-3

10-16
10-18
12-30

СТР
СТР
КР

Ar
He
N 2

350-550
300-500
300-500

32-37
33-38
34-39

18-20
20-22
20-28

2-3
1,6-3
1,6-3

20-35
18-35
18-35

14-16
30-40
14-16

СТР
СТР
КР

Ar
He
N 2

300-500
270-500
280-500

28-36
32-38
32-39

16-18
18-22
18-22

2-4
1,5-3
1,5-3

20-40
18-35
18-35

14-18
30-40
14-16

СТР
СТР
КР

Ar
He
N 2

350-680
350-650
350-650

32-39
34-42
35-42

16-18
16-20
16-20

2-4
2-4
2-4

14-18
30-50
14-18

Медь сваривают с минимальным числом проходов.

Сварку ведут "углом вперед" справа налево. Для формирования обратной стороны шва стыковых соединений используют графитовые или медные водоохлаждаемые подкладки. Двухсторонние соединения выполняют с формированием шва на весу или по подварочному шву наложенному ручной аргонодуговой сваркой W-электродом.

Бронзы

Бронзы - сплавы меди с алюминием. Их обозначают двумя буквами "Бр" начальными буквами русских названий легирующих элементов и рядом чисел, указывающих содержание этих элементов в %.

Так, марка БрАЖМц 10-3-1,5 означает, что бронза содержит 10% алюминия, 3% железа, 1,5% марганца. В конце некоторых марок литейных бронз ставится буква "Л".

Ориентировочные режимы сварки бронз Бр.АМц 9-2, Бр.АЖМц 9-5-2 и латуни ЛМНЖ 55-3-1 в аргоне в нижнем положении (постоянный ток, обратная полярность, проволока Бр. АМц 9-2)

Вид соединения

Размер, мм

Процесс сварки

Сварочный ток, А

Напряжение на дуге, В

Скорость сварки м/ч

Диаметр электрода, мм

Вылет электрода, мм

Расход газа, л/мин

0 +1

ИДС
КЗ

150-190
160-190

23-26
22-25

20-25
20-25

1-1,5
1-1,5

10-16
10-16

0 +1,5

ИДС
КЗ

140-220
160-220

23-26
22-26

20-22
20-22

1-1,5
1-1,5

10-16
10-16

10-12
10-12

СТР
СТР

300-400
375-450

29-33
31-36

25-32
30-35

20-35
20-35

12-16
14-16

0 +2
0 +2

Трудность сваривания бронз объясняется их повышенной жидкотекучестью. При сварке бронз возникают трудности, вызванные образованием окиси алюминия, поэтому способ и технологию сварки выбирают такими, как и при сварке алюминия, а режимы - характерные для медных сплавов.

Латуни

Сплавы меди с цинком - это латуни , или медноцинковые латуни. Для улучшения свойств в сплав добавляют Al, Mn, Ni, Fe, Sn, Si и др. Такие латуни называются специальными.

Латуни обозначают буквой "Л", справа от которой пишут буквенное обозначение специально вводимых элементов (кроме Zn). затем цифру, указывающую процент меди, и наконец, проценты специально вводимых добавок в той же последовательности, в какой записаны сами элементы. В маркировке элементы обозначаются русскими буквами: Л - алюминий, Б -бериллий, О - олово, С - свинец, Н - никель, Мц - марганец, К - кремний, Мг - магний, X - хром, Ц - цинк.

ЛТ 96 - (томпак) означает медно-цинковую латунь с содержанием 96% меди и 4% цинка.

Л 68 - медноцинковая латунь с содержанием 68% меди и 32% цинка.

ЛАЖМц 70-6-3-1 - это специальная латунь с содержанием 70% меди, 6% алюминия, 3% железа, 1% марганца, 20% цинка.

Особенность сварки латуней - интенсивное испарение цинка при температуре 907°С. При этом ухудшаются механические свойства сварного соединения. Для уменьшения выгорания цинка эффективны сварка на пониженной мощности дуги, применение присадочной проволоки с кремнием, который создает на поверхности сварочной ванны окисную пленку (SiO 2), препятствующую испарению цинка.

К цветным металлам, которые хорошо соединяются газовой сваркой, относятся медь, алюминий и их сплавы.

Сварка меди . Температура плавления меди составляет 1083 °С, а температура ее кипения - 2360 °С.

Трудности при сварке . Высокая теплопроводность меди требует применения более мощного пламени, чем при сварке стали.

Склонность меди к окислению способствует образованию тугоплавких оксидов.

При расплавлении медь поглощает газы, находящиеся в воздухе, которые затрудняют газовую сварку и приводят к порообразованию. Наличие таких примесей, как свинец, сера, висмут и кислород, ухудшает ее свариваемость.

Сильное тепловое расширение приводит к значительным деформациям металла.

Характеристика пламени . Вид пламени - строго нормальное. Его тепловую мощность выбирают в зависимости от толщины свариваемых деталей: до 4 мм - исходя из расхода ацетилена 150...175 дм3/ч на 1 мм толщины металла; при толщине 4... 10 мм - 175...225 дм3/ч.

Если толщина меди превышает 10 мм, то сварку проводят двумя горелками: первая осуществляет подогрев, вторая - непосредственно сварку. Пламя должно быть «мягким» (с минимально возможной длиной ядра).

Технологические особенности . Сварку выполняют с применением флюса, предохраняющего медь от окисления (см. табл. 5.4).

В качестве присадочных материалов используют прутки и проволоку из меди и ее сплавов с серебром, никелем, железом и другими металлами (см. табл. 5.7). Диаметр присадочной проволоки зависит от толщины меди: он должен составлять 0,5 ...0,75 толщины металла, но не более 8 мм.

Техника сварки . Сварку проводят как левым, так и правым способами с максимальной скоростью и без перерыва.

Сварка меди осуществляется за один проход.

Дополнительные меры . Для компенсации потерь теплоты вследствие ее отвода в основной металл применяют предварительный и сопутствующий подогрев свариваемых кромок. Сварку выполняют на асбестовой подкладке. В процессе сварки нагретый металл должен быть всегда защищен пламенем.

После сварки металла толщиной до 4 мм шов проковывают в холодном состоянии, при большей толщине - при нагреве до температуры 550...600°С. Дополнительно улучшить свойства металла шва после проковки можно с помощью термической обработки (нагрев до температуры 550...600°С и охлаждение в воде).

Сварка латуни . Латунь представляет собой медно-цинковый сплав (см. подразд. 4.3.1). Температура ее плавления изменяется в пределах 800... 900 °С в зависимости от содержания цинка.

Трудности при сварке . Выгорание цинка оказывает отрицательное влияние на здоровье сварщика.

Поглощение газов металлом в расплавленном состоянии приводит к порообразованию.

Отмечается склонность металла шва и околошовной зоны к образованию трещин при температуре 300...600°С.

Сравнительно высокая теплопроводность латуни требует применения более мощного пламени, чем при сварке стали.

Характеристика пламени . Вид пламени - окислительное, препятствующее выгоранию цинка из-за наличия оксидной пленки на поверхности свариваемого металла.

Тепловую мощность пламени выбирают исходя из расхода ацетилена 100... 120 дм3/ч на 1 мм толщины металла.

Технологические особенности . Изделия толщиной до 1 мм сваривают с отбортовкой кромок, 1...5 мм - с отторцован-ными кромками, 6... 15 мм - с V-образной разделкой кромок, 15...25 мм - с Х-образной разделкой. Свариваемые кромки должны быть зачищены до металлического блеска. Возможно травление кромок в 10%-ном растворе азотной кислоты, после чего их промывают горячей водой и насухо протирают ветошью.

Сварку проводят с применением флюсов (см. табл. 5.4) и присадочной проволоки (см. табл. 5.7). Для латуней Л62 и Л68 эффективно использование самофлюсующихся присадочных проволок ЛКБ062-0,2-0,04-0,5.

Сварку выполняют с максимально возможной скоростью.

Техника сварки . Сварку осуществляют левым способом. Конец ядра пламени располагают на расстоянии 7... 10 мм от свариваемой поверхности. Конец присадочной проволоки должен постоянно находиться в зоне сварочного пламени, которое направляют на проволоку. Ее держат под углом 90° к мундштуку.

Дополнительные меры . После сварки швы подвергают проковке. Латуни, содержащие более 40 % цинка, проковывают при температуре выше 650 °С, а менее 40 % - в холодном состоянии. Затем проводят отжиг изделия при температуре 600...650 °С.

Сварка бронзы . Согласно классификации по химическому составу различают оловянные (3... 14 % олова) и безоловянные бронзы (см. подразд. 4.3.1). Температура плавления первых 900...950 °С, вторых - 950...1080°С. Рассмотрим особенности сварки оловянной бронзы.

Трудности при сварке . К факторам, затрудняющим проведение сварки и ухудшающим свойства сварного соединения, относятся выгорание олова и цинка, высокая жидкотекучесть бронзы и порообразование.

Характеристика пламени . Вид пламени - строго нормальное. Его тепловую мощность выбирают исходя из расхода ацетилена 70... 120 дм 3 /ч на 1 мм толщины металла. Пламя «мягкое», без перегрева жидкой ванны.

Технологические особенности . Сварку проводят с применением тех же флюсов, которые используют при сварке меди (см. табл. 5.4). Присадочные материалы по химическому составу аналогичны свариваемому изделию.

Сварку осуществляют в нижнем положении на подкладных элементах из асбеста или графита.

Техника сварки . Сварку выполняют преимущественно левым способом. Конец ядра пламени располагают на расстоянии 7...10 мм от поверхности свариваемого металла.

При сварке следует перемешивать сварочную ванну присадочным прутком, периодически добавляя флюс в жидкий металл.

Дополнительные меры . Для особо ответственных изделий с повышенным содержанием олова рекомендуется отжиг при температуре 750 °С и закалка при 600...650 °С.

Газовая сварка редко используется для получения соединений алюминиевых и кремнистых бронз, которые лучше свариваются дуговыми способами, например аргонодуговым.

Сварка алюминия и его сплавов . Температура плавления алюминия 660 °С, пленки оксида алюминия (Аl 2 О 3) - 2050 °С.

На поверхности алюминия и его сплавов постоянно присутствует пленка оксида, которая образуется вследствие их взаимодействия с кислородом воздуха.

Трудности при сварке . Сварка затруднена из-за наличия прочной тугоплавкой пленки оксида на поверхности алюминиевых сплавов, которую необходимо устранить.

Высокая теплопроводность материалов требует повышенной мощности пламени. В алюминии и его сплавах возникают значительные остаточные напряжения и деформации, велика вероятность образования трещин. При нагревании алюминий не меняет цвет, что осложняет работу сварщика.

Характеристика пламени . Сварку проводят нормальным «мягким» пламенем. Его тепловую мощность выбирают исходя из расхода ацетилена 75 дм 3 /ч на 1 мм толщины металла.

Технологические особенности . Основным видом соединений при газовой сварке алюминия и его сплавов является стыковое. Выполнять тавровые, угловые и нахлесточные соединения не рекомендуется. Кромки разделывают механическим способом и за 2 ч до сварки тщательно зачищают.

Сварку осуществляют в нижнем положении за один проход с максимально возможной скоростью.

Детали толщиной свыше 10 мм перед сваркой рекомендуется подогреть до температуры 300... 350 °С.

Сварку проводят с применением флюсов (см. табл. 5.3), в качестве присадочного материала используют сварочную проволоку одиннадцати марок (см. табл. 5.8).

После сварки остатки флюса тщательно удаляют.

Техника сварки . Левым способом сваривают детали толщиной до 5 мм, правым - толщиной свыше 5 мм. Сварку плоских конструкций целесообразно выполнять обратноступенчатым методом.

Дополнительные меры . Перед сваркой кромки свариваемых деталей и присадочную проволоку промывают в течение 10 мин в щелочном растворе, содержащем 20... 25 г едкого натра и 20... 30 г карбоната натрия на 1 дм 3 воды, при температуре 65 °С с последующей промывкой в воде. После этого кромки и присадочную проволоку подвергают травлению в течение 2 мин в 15%-ном растворе азотной кислоты, промывают в горячей и холодной воде, а затем сушат.

Правила безопасности предусматривают при проведении сварки латуней на открытой площадке применение респиратора, а в замкнутых резервуарах - шлангового противогаза во избежание попадания в органы дыхания паров цинка, входящего в состав латуней.

Чугун – сплав железа с углеродом (содержание углерода >2%) и другими химическими элементами, играет важную роль в современной металлургии и машиностроении. Изделия из него прочны, обладают хорошей износостойкостью, устойчивы к трению, а так же хорошо поддаются обработке режущим инструментом. Все это, а так же низкая стоимость и отличные литейные свойства делают чугун очень популярным материалом.

Особые навыки и умения требуются для обработки чугуна

Однако, этот металл очень хрупок, и эта хрупкость – причина больших проблем. Нагрев чугуна сильно меняет его структуру, поэтому сварка (и в особенности холодная сварка) чугуна является делом очень непростым. Между тем, при ремонте чугунных изделий, создании сварочно-литых конструкций и исправлении брака в литье сварка чугуна просто необходима.

Основные проблемы при сварке.

Проблемы возникают разные, но все они ведут к одному результату – ослаблению прочности шва до неприемлемых значений и невозможности использовать деталь по назначению.

  • Сварные швы чугуна подвержены очень быстрому охлаждению. При охлаждении в зоне шва образуется белый чугун, который почти не поддается механической обработке. Он испортит внешний вид детали и механические свойства шва. Убрать его будет очень трудно.
  • Чугун, как уже говорилось выше, хрупкий металл, и при неравномерном нагреве в процессе сварки он сильно меняет свою структуру. Из-за этого в швах могут образоваться трещины, и это будет являться браком, так как прочность такого шва будет низкой.
  • Чугун – жидкотекучий металл, и удержать его в сварочной ванне – задача не из легких. Расплескивание металла не только осложнит процесс сварки, но может так же стать причиной серьезных ожогов. В случае выброса большого количества металла даже спецодежда вряд ли защитит от травмы.
  • При сварке чугуна выделяется большое количество газов, это ведет к образованию пор на шве и нарушению его целостности.
  • Из-за окисления кремния при сварке иногда возникают так называемые тугоплавкие оксиды. Температуры сварочной дуги недостаточно, чтобы их прожечь, появляются непровары. Внешне такой шов выглядит нормально, но его надежность оставляет желать лучшего.

Подготовка чугуна к сварке. Требования к качеству швов.

Чтобы избежать проблем, описанных выше, при сварке чугуна, необходимо соблюдать следующие правила:

  • Поверхность под сварку должна быть чистой – удалите с нее все следы грязи, налета, масла, копоти, жира. Обезжирьте поверхность спиртом или специальным составом. Поверхность должна быть сухая.
  • Поверхность должна быть гладкой – если на ней есть бугры, неровности, их можно удалить механическим способом.

Эти подготовительные меры помогут избежать растрескивания чугуна и получить хорошее качество сварных швов.

Что такое качественный сварной шов? Сварные швы должны быть непроницаемыми, обладать необходимыми механическими свойствами, быть прочными, одноцветными, поддаваться механической обработке. Сварные швы не должны иметь трещин, бугров, пор, пузырей. Подробные требования к сварным швам изложены в технологических процессах.

В зависимости от этих и других требований, а так же от вида свариваемых изделий, объема работ и технологических возможностей выбирается наиболее подходящая технология сварки чугуна:

  • Холодная сварка чугуна (без подогрева)
  • Горячая сварка чугуна (с подогревом)

Немного о холодной сварке.

Холодная сварка чугуна – сварка без предварительного нагрева детали. Она может осуществляться электродами, аргоновой дугой, либо полуавтоматом. Самым простым и наиболее распространенным способом является холодная сварка чугуна электродами. Для этого можно использовать электроды на никелевой, стальной и медной основе. Электроды на медной основе изготавливаются из сплава олова или алюминия. Первые помогают получать пластичные швы, удобные для дальнейшей обработки, а вторые – увеличивают прочностные характеристики шва. А с помощью стальных электродов можно получить шов, который вообще не поддастся механической обработке. Все эти моменты необходимо учитывать при выборе материалов.

Следующий способ холодной сварки – аргоновая дуга. Лучше всего для сварки чугуна подходят никелевые присадочные прутки. Способ довольно дорогой, и чтобы сэкономить, часто используют алюминиево-бронзовые прутки. Они дешевле, но их применение ограничено: если деталь будет подвергаться тепловому воздействию, их применять нельзя! И не стоит забывать о специальных средствах защиты – испарения, образующиеся во время соединения металла аргоном, очень вредны для здоровья. Если есть возможность, используйте маски или респираторы с принудительной вентиляцией.

Так же холодная сварка чугуна возможна и полуавтоматическими машинами. Для полуавтоматической обработки чугуна используют следующие типы проволок и смеси газов:

  • Кремний-бронзовая проволока с защитой из аргона и гелия (50% + 50%)
  • Никелевая проволока с защитой из аргона (100%)
  • Стальная проволока с защитой из аргона и углекислого газа (80% и 20%)

Независимо от выбранного способа холодной сварки, существуют общие требования – своеобразная инструкция, которая поможет получить отличный результат:

  • Детали должны быть чистыми (это правило действует не только при сварке чугуна)
  • Швы необходимо простукивать молотком (для снятия остаточных напряжений)
  • Сварку нужно проводить низкими токами и на коротких участках (идеальная длина шва – не более 30 мм).
  • После окончания работ необходимо, чтобы изделие остывало постепенно.
  • Не забывайте об общих требованиях безопасности — рабочее место должно быть хорошо освещено и оборудовано вентиляцией, а у вас должна быть вся необходимая спецодежда.

Сварка чугунных изделий с подогревом

Холодная сварка чугуна применяется главным образом при мелком ремонте, когда нет возможности организовать полноценный технологический процесс. Этот вид сварки дает хорошие результаты, но требует осторожности, так как есть большой риск испортить деталь. Преимуществом холодного метода является возможность работать в одиночку.

Сварка с подогревом – уровень «Мастер»

Идеальной с точки зрения получения качественного результата при сварке чугуна является горячая сварка. Она позволяет в корне пресечь такие неприятности, как растрескивание швов, появление белого чугуна и образование пор. Горячая сварка чаще всего используется на крупных предприятиях, где есть необходимое оборудование: нагреватели, печи, изоляционные камеры, а так же грузоподъемные механизмы.

Технологический процесс горячей сварки довольно сложен. Суть его в том, чтобы обеспечить нагрев детали до определенной температуры и поддержание этой температуры в процессе обработки. Инструкция довольно проста:

  • Нагреть деталь до 600 градусов
    Вести сварку высокими токами
  • Обеспечить равномерное постепенное охлаждение детали (для этого ее можно накрыть специальным материалом, поместить в печь или просто в песок).

Можно нагреть деталь до температуры 300-400 градусов. Такая сварка называется полугорячей.

Температура — не выше 750 градусов по Цельсию. Иначе чугун начнет плавиться. Подача тепла — равномерная. Резкие скачки температуры приведут к растрескиваниям металла и деталь будет безнадежно испорчена.

Для горячей сварки используются чугунные или угольные электроды. Это позволяет получить в шве металл, идентичный тому, из которого изготовлена деталь и придает шву хорошие механические свойства.

Горячую сварку, в отличие от холодной, ведут большими токами и непрерывно, до окончания заварки дефекта, либо завершения шва. При больших объемах работают попеременно два сварщика. Чем непрерывнее шов – тем он лучше.

Выбор режимов сварки зависит от толщины металла. Чем толще металл – тем больше сила тока и диаметр используемых электродов. Рекомендуемые диаметры электродов и силы тока представлены в таблице 1.

Таблица 1

Вот, пожалуй, основные способы сварки чугуна. Можно сделать вывод, что сварка чугуна – процесс хоть и сложный, но отнюдь не невозможный. При правильном подходе к делу нет ничего, что могло бы помешать вам получить качественный результат. Надеемся, данная статья была вам полезна. Свои отзывы, пожелания, предложения вы можете написать в комментариях!