Методы определения морозостойкости строительных материалов. Морозостойкость плотностных и пористых материалов. Морозостойкость строительных материалов. Способы определения. Конструкции с повышенными требованиями по морозостойкости

Способ определения морозостойкости строительных материалов относится к области испытаний строительных изделий, в частности кирпича, камней силикатных и керамических. Способ определения морозостойкости строительных материалов включает насыщение образцов в воде или растворе хлористого натрия, поверхностное цикличное замораживание и оттаивание образцов и визуальную оценку морозостойкости, при этом замораживание осуществляют в течение 5-10 мин, а оттаивание 3-5 мин 0,1-0,2 части испытуемой поверхности, смену режимов замерзания и оттаивания ведут со скоростью 30-40 град/мин, а образцы погружают в воду и раствор хлористого натрия на 90-95% от их объема. Изобретение обеспечивает сокращение длительности испытаний, снижение трудоемкости, повышение достоверности результатов испытаний.

Изобретение относится к области испытания строительных материалов, в частности к определению их морозостойкости. Известен способ определения морозостойкости строительных материалов, включающий насыщение образцов в воде или растворе хлористого натрия, замораживание образцов в воздушной среде при температуре минус 20 o C в течение 2 - 4 ч и оттаивание образцов в водной среде или растворе хлористого натрия при температуре 20 o C в течение 1,5 - 2 ч, регистрацию числа циклов замораживания - оттаивания до достижения 25%-ной потери прочности образцов или 5%-ной потери массы или до появления внешних признаков разрушения, по которым судят о морозостойкости строительных материалов (1). Недостатком способа является значительная трудоемкость и продолжительность испытания и необходимость применения сложного и громоздкого оборудования. Известен способ ускоренного определения морозостойкости строительных материалов путем насыщения водой образцов с вмонтированным в него стальным стержнем, замораживания и оттаивания и фиксации резкого возрастания начального электрического потенциала стального стержня, по которому и судят о морозостойкости материала (2). Известен способ определения морозостойкости образцов строительного материала по соотношению структурной и прочностной характеристик, отличающийся тем, что за структурную характеристику принимают капиллярную и контракционную пористости, а за прочностную - работу разрушения образцов (3). Недостатками известных способов (2, 3) является косвенность методов определения морозостойкости и вследствие этого невысокая точность результатов. Кроме того недостатками способов (1, 2, 3) является то, что определения морозостойкости в условиях прямого объемного замораживания не соответствует фактическим эксплуатационным условиям строительного материала, подвергающегося попеременному воздействию отрицательных и положительных температур только с одной стороны. Поэтому результаты испытания строительного материала приводят к большому разбросу значений морозостойкости материала. Известен способ определения морозостойкости строительных материалов путем одностороннего замораживания в морозильной камере в специальном контейнере, обеспечивающем отвод тепла с одной стороны испытуемых образцов, оттаивания в ванне с водой, определения структурной и прочностной характеристики образцов с последующим расчетом морозостойкости по формуле (4). Известен способ определения морозостойкости строительных материалов, включающий насыщение образца водой, путем циклического ввода под давлением порций воды, рассчитанных по эмпирической формуле (5). Недостатками известных способов (4, 5) является недостаточно высокая достоверность результатов испытания из-за применения в них расчетных формул с использованием эмпирических коэффициентов. Наиболее близким к предлагаемому является способ определения морозостойкости, включающий одностороннее замораживание кладки из кирпича или камней при температуре воздуха - 15 - 20 o C в течение 8 ч, оттаивание замороженной стороны кладки дождеванием при температуре воды 15 - 20 o C в течение 8 ч, регистрацию числа циклов замораживания и оттаивания до появления на поверхности кладки видимых признаков разрушения (шелушение, расслоение, растрескивание, выкрашивание), либо по потере массы и прочности, по которым судят о морозостойкости образцов строительных материалов (6). Недостатками известного способа является его высокая трудоемкость, стоимость и большая продолжительность испытания, что не позволяет осуществлять оперативный контроль выпускаемой продукции, значительные энергетические затраты на создание условий замораживания. Технический результат предлагаемого изобретения - сокращение длительности испытания, снижение трудоемкости, повышение достоверности результатов испытаний. Технический результат достигается тем, что в известном техническом решении, включающем предварительное насыщение образцов в воде или растворе хлористого натрия, одностороннее цикличное замораживание и оттаивание образцов, и визуальную оценку морозостойкости, ведут направленное, точечное замораживание в течение 5 - 10 мин и оттаивание в течение 3 - 5 мин 10 - 20% открытой поверхности испытываемых образцов, причем смену режимов замораживания и оттаивания осуществляют со скоростью 30 - 40 o в минуту, а образцы погружают в воду или раствор хлористого натрия на 90 - 95% их объема. Способ осуществляли следующим образом. Образцы, предназначенные для испытания на морозостойкость, предварительно насыщали в воде или растворе хлористого натрия. Затем устанавливали три образца Т-образно в емкость лицевой поверхностью вверх. После этого заливали в емкость воду или раствор хлористого натрия до погружения образцов на 90 - 95% их объема. Потом направленным потоком холодного воздуха при температуре минус 15 - 20 o C обрабатывали стык трех образцов, т.е. 10 - 20% их поверхности в течение 5 - 10 мин. Затем со скоростью 30 - 40 o C в мин переходили на режим нагревания и обрабатывали тот же стык теплым потоком воздуха с температурой 15 - 20 o C в течение 3 - 5 мин и регистрировали число циклов замораживания и оттаивания до появления видимых признаков разрушения (расслоения, растрескивания, выкрашивания, шелушения), по которым судили о морозостойкости строительных материалов. Использование в предлагаемом техническом решении приема точечного, направленного замораживания в течение 5 - 10 мин и оттаивания в течение 3 - 5 мин 10 -20% открытой поверхности испытываемых образцов позволяет создать в короткое время условия протекания процессов близких к фактическим при эксплуатации. За счет резкого (30 - 40 o C в мин) изменения режимов замораживания и оттаивания создается напряженное состояние в порах материала, обусловливающие деструктивные процессы, а именно разрыхление структуры, интенсификации микротрещинообразования и соответственно увеличение проницаемости. Погружение образцов в воду или раствор хлористого натрия на 90 - 95% от объема образца обеспечивает условия постоянной миграции влаги к открытой лицевой поверхности испытываемого образца через капилляры и микротрещины. Все эти приемы позволяют проводить скоростное определение морозостойкости, близкое к фактическому. Незначительные энергетические затраты, низкая трудоемкость, доступность и достоверность результатов позволяют осуществлять текущий контроль выпускаемой продукции и своевременно выявлять нарушения технологического процесса. Источники информации 1. ГОСТ 10090.1-95, ГОСТ 10090.2-95 "Бетоны. Методы определения морозостойкости. 2. А.С. СССР N 482676 М. кл. C 01 N 33/38, 1975 г. 3. А.С. СССР N 435621 М. кл. C 01 N 25/02, 1975 г. 4. А.С. СССР N 828849 М. кл. C 01 N 33/38, 1982 г. 5. А.С. СССР N 1255921 М. кл. C 01 N 33/38, 1986 г. 6. ГОСТ 7025-91 Кирпич и камни керамические и силикатные. Методы определения и водопоглощения, плотности и контроля морозостойкости.

Формула изобретения

Способ определения морозостойкости строительных материалов, включающий насыщение образцов в воде или растворе хлористого натрия, цикличное замораживание и оттаивание открытой поверхности образцов и визуальную оценку морозостойкости, отличающийся тем, что замораживают и оттаивают 10 - 20% поверхности испытуемого образца в течение соответственно 5 - 10 мин и 3 - 5 мин, а смену режимов замораживания и оттаивания ведут со скоростью 30 - 40 град. /мин, при этом образцы погружают в воду или раствор хлористого натрия на 90 - 95% от их объема.

Что такое морозостойкость и каковы методы её определения? Какие требования по морозостойкости предъявляют к керамическим, стеновым и облицовочным материалам

Морозостойкость - свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание. Морозостойкость материала количественно оценивается маркой по морозостойкости. За марку материала по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают образцы материала без снижения прочности на сжатие более 15%; после испытания образцы не должны иметь видимых повреждений - трещин, выкрашивания (потеря массы не более 5%). От морозостойкости зависит долговечность строительных материалов в конструкциях, подвергающихся действию атмосферных факторов и воды. Марка по морозостойкости устанавливается проектом с учетом вида конструкции, условий ее эксплуатации и климата. Климатические условия характеризуются среднемесячной температурой наиболее холодного месяца и числом циклов попеременного замораживания и оттаивания по данным многолетних метеорологических наблюдений.

Легкие бетоны, кирпич, керамические камни для наружных стен обычно имеют морозостойкость 15, 25, 35. однако бетон, применяемый в строительстве мостов и дорог, должен иметь марку 50, 100 и 200, а гидротехнический бетон - до 500. Воздействие на бетон попеременного замораживания и оттаивания подобно многократному воздействию повторной растягивающей нагрузки, вызывающей усталость материала. Испытание морозостойкости материала в лаборатории проводят на образцах установленной формы и размеров (бетонные кубы, кирпич и т.п.) перед испытанием образцы насыщают водой. После этого их замораживают в холодильной камере от -15 до -20С, чтобы вода замерзла в тонких порах. Извлеченные из холодильной камеры образцы оттаивают в воде с температурой 15-20С, которая обеспечивает водонасыщенное состояние образцов. Базовые - первый (для всех видов бетонов, кроме бетонов дорожных и аэродромных покрытий) и второй (для бетонов дорожных и аэродромных покрытий); ускоренные при многократном замораживании и оттаивании - второй и третий; ускоренные при однократном замораживании - четвертый (дилатометрический) и пятый (структурно-механический). Для оценки морозостойкости материала применяют физические методы контроля и прежде всего импульсный ультразвуковой метод. С его помощью можно проследить изменение прочности или модуля упругости бетона в процессе циклического замораживания и определить марку бетона по морозостойкости в циклах замораживания и оттаивания, число которых соответствует допустимому снижению прочности или модуля упругости.

Обстоятельные исследования по влиянию грануло-метрии пор на морозостойкость керамических материалов выявили следующие положения:

все поры в керамическом материале (с точки зрения морозостойкости) могут быть разделены на три категории: опасные, безопасные и резервные;

опасные поры заполняются водой при насыщении на холоду. В них она удерживается при извлечении материала из воды и замерзает при температуре от --15 до --20° С. Диаметр этих пор от 200 до 1 мк для глиняного кирпича пластического прессования, от 200 до 0,1 мк для глиняного кирпича полусухого прессования;

безопасные поры при насыщении на холоду водой не заполняются, либо заполнившая их вода не замерзает при указанных температурах. Это обычно мелкие поры. Заполняющая их вода становится по существу пристеночной адсорбированной влагой, имеющей свойства почти твердого тела и температуру замерзания существенно ниже (--20° С);

резервные поры при насыщении на холоду полностью заполняются водой, но из них при извлечении образца из насыщающего сосуда вода частично вытекает вследствие малых капиллярных сил. Это крупные поры диаметром более 200 мк.

Согласно этим исследованиям, керамический материал будет морозостойким, если в нем объем резервных пор достаточен для компенсации прироста объема замерзающей воды в опасных порах.

По морозостойкости насыщенный водой глиняный обыкновенный кирпич должен выдерживать без каких-либо внешних признаков разрушения (расслоение граней, выкрашивание ребер и углов, растрескивание) не менее 15 повторных циклов попеременного замораживания при температуре -75°С и ниже с последующим оттаиванием в воде при температуре 15±5°С.

Легковесный кирпич должен выдерживать без каких-либо временных признаков разрушения не менее 10 повторных циклов попеременного замораживания при температуре -15°С и ниже с последующим оттаиванием при температуре 15 ±5°С.

Лицевой кирпич должен выдерживать без каких-либо признаков видимых повреждений не менее 25 повторных циклов попеременного замораживания с последующим оттаиванием в воде.

Морозостойкость - способность насыщенного водой материа­ла сохранять физико-механические свойства при попеременном замораживании и оттаивании.

Морозостойкость строительного материала характеризуется маркой по морозостойкости: числом циклов попеременного замора­живания и оттаивания образцов бетона, после которых сохраняются первоначальные физико-механические свойства в нормируемых пределах: как правило, потеря массы и (или) прочности.

Щебень Полученные пробы промывают и высушивают до постоянной массы. Затем каждую пробу данной фракции равномерно насыпают в металлический сосуд и заливают водой, имеющей температуру 20±5 °С. Через 48 ч сливают воду из сосуда, помещают щебень в морозильную камеру и доводят температуру в камере до (-18±2) °С. Продолжительность одного цикла замораживания при такой темпе­ратуре составляет 4 ч. После этого сосуд с щебнем вынимают из морозильной камеры и помещают в ванну с водой с температурой 20±5 °С и выдерживают при этой температуре до полного оттаива­ния щебня, но не менее 2 ч. Далее циклы испытания повторяют.

После 15, 25 и каждых 25 циклов попеременного заморажива­ния и оттаивания пробу щебня высушивают до постоянной массы, просеивают через контрольное сито, на котором она полностью ос­тавалась перед испытанием, взвешивают остаток на сите и вычис­ляют потерю массы Am, %, с точностью до 0,1% по формуле Морозостойкость бетона определяется на образцах кубической формы размером 100x100x100 мм или 150x150x150 мм при дости­жении им нормативной прочности на сжатие (как правило, после 28 суток твердения).

Контрольные и основные образцы перед заморажива­нием насыщают водой температурой 18±2 °С.

Для насыщения образцы погружают в жидкость на 1/3 их высо­ты на 24 ч, затем уровень жидкости повышают до 2/3 высоты об­разца и выдерживают в таком состоянии еще 24 ч, после чего об­разцы полностью погружают в жидкость на 48 ч таким образом, что­бы уровень жидкости был выше верхней грани образцов не менее чем на 20 мм.

Контрольные образцы через 2...4 ч после извлечения из ванны испытывают на сжатие.

Основные образцы загружают в морозильную камеру при тем­пературе минус 18+2 °С и выдерживают при этой температуре не менее 2,5 ч для образцов с ребром 100 мм и не менее 3,5 ч для об­разцов с ребром 150 мм. Образцы после замораживания оттаивают в ванне с водой при температуре 18±2 °С в течение 2,0±0,5 ч и 3,0+0,5 ч соответственно в зависимости от размера образцов. В су­тки должно проводиться не менее 1 цикла.

Количество циклов попеременного замораживания и оттаива­ния, после которых должно проводиться испытание на сжатие, ус­танавливается в зависимости от ожидаемой марки бетона по моро­зостойкости.

Марку бетона по морозостойкости принимают за соответст­вующую требуемой, если среднее значение прочности на сжатие основных образцов после установленного для данной марки коли­чества циклов попеременного замораживания и оттаивания умень­шилось не более чем на 5 % по сравнению со средней прочностью на сжатие контрольных образцов.

Для цементных бетонов установлены следующие марки по мо­розостойкости: F25, F35, F50, F75, F100, F150, F200, F300, F400, F500, F600, F800. F1000. Зависит от физических свойств материала.

Назовите свойства, связанные с отношением материала к нагреванию. Единицы измерения. Численные значения. Примеры для различных материалов.

Теплопроводность(ккал/м*ч*градус,вода0,51),термостойкость,теплоёмкость(кДЖ/кг*градус вода=1), огнеупорность(градусы), огнестойкость(градусы). Теплопроводность сталь 50 . теплоёмкость сталь – 0,48

Теплопроводность. От чего зависит? В каких единицах измеряется. Численные значения теплопроводности для различных материалов. Для каких конструкций учитывается?

Теплопроводность (ккал/м*ч*градус) – это способность материала передавать через свою толщу тепло. Это явление возникает когда на противоположных поверхностях материала существует разность температур, например, на внешней и внутренней поверхностях стен здания. Зависит от строения и вещества материала, величины и характера пористости, влажности и др. Воздух – 0,02. Вода-0,51.Кирпич-0,75.гранит-2,5.Сталь-50. Учитывается для стен помещений, жилых строений и тд.

Объясните различие между огнестойкостью, огнеупорностью и теплостойкостью. Примеры.

Огнестойкость-способность материала не гореть. Огнеупорность-способность материала выдерживать длительное время действие высоких температур без деформации(без плавления). Термостойкость – способность материала сохранять эксплуатационные свойства при повышенных температурах: не деформируясь сохранять прочность.

Назовите механические и деформативные свойства материалов. Методы их определения.

Механические свойства отражают способность материала противостоять механическим воздействиям (нагрузкам) при эксплуатации. Нагрузки могут быть постоянными и временными. Св-ва: прочность твёрдость, стойкость при ударе, стойкость при истирании, износостойкость,упругопластические и деформативные св-ва.

Релаксация - свойство материала самопроизвольно снижать напряжения при условии, что начальная ее личина деформации зафиксирована жесткими связями и остается неизменной. При релаксации напряжений может измениться характер начальной деформации, например из упругой постепенно перейти в необратимую "(пластическую), при этом изменения размеров не происходит. Такое исчезновение напряжений возможно за счет межмолекулярных перемещений и переориентации внутримолекулярной структуры. Время, в течение которого первоначальная величина напряжения снижается в е -2,718 раза (е - основание натуральных логарифмов), называют периодом релаксации. Период релаксации меняется от 1(Н0 с у материалов жидкой консистенции до 2-Ю10 с (десятки лет и более) - у твердых материалов (чем меньше, тем более деформативен материал).

Упругость - свойство материала принимать после снятия нагрузки первоначальную форму и размеры. Количественно упругость характеризуют пределом упругости, который условно приравнивают напряжению, при котором материал начинает получать остаточные деформации очень малой величины, устанавливаемой в технических условиях для данного материала.Вышеуказанные характеристики прочности в значительной степени являются условными: 1) они не учитывают фактора времени, т. е. продолжительности действия напряжений, что искажает величину истинной прочности материала; 2) размеры, форма, характер поверхности образцов материала, скорость нагружения, прикалывания боры и другие исходные данные в принятых методах условны. Предел прочности одного и того же материала может иметь различную величину в зависимости от размера образца, его формы, скорости приложения нагрузки и конструкции прибора, на котором испытывались образцы.

Твердость - свойство материала сопротивляться проникновению в него другого более твердого материала. Для определения твердости материалов в зависимости от их вида и назначения существует ряд методов. Твердость каменных материалов однородного строения определяют по шкале Мооса, которая составлена из 10 минералов с условным показателем твердости от 1 до 10 (самый мягкий тальк- 1, самый твердый алмаз- 10). Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один царапает испытываемый материал, а другой оставляет черту на образце материала. Твердость металла, бетона, пластмасс определяют вдавливанием в испытуемый образец под определенной нагрузкой и в течение определенного времени стандартного стального шарика. За характеристику твердости в этом случае принимают отношение нагрузки к площади отпечатка. Показатели твердости, полученные разными способами, нельзя сравнивать друг с другом. Высокая прочность материала не всегда говорит о его твердости (например, древесина по прочности при сжатии равнозначна бетону, а ее твердость значительно меньше, чем у бетона).

Истираемость - свойство материала сопротивляться истирающим воздействиям. Одновременное воздействие истирания и удара характеризует износостойкость материала. Оба эти свойства определяют различными условными методами: истираемость - на специальных кругах истирания, а износ - с помощью вращающихся барабанов, куда вместе с пробой материала часто загружают определенное количество металлических шаров, усиливающих эффект измельчения. За характеристику истираемости принимают потерю массы или объема материала, отнесенных к 1 см2 площади истирания, а за характеристику износа - относительную потерю массы образца в процентах от пробы материала.

8 февраля 2011

Под морозостойкостью понимают способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения, т. е. без образования трещин, выкрашивания, расслаивания и без значительной потери прочности и веса.

Вода, находящаяся в порах материала, превратившись в лед, увеличивается в объеме примерно на 10%. При этом в материале возникают большие внутренние напряжения, которые постепенно его разрушают. Поэтому необходимо наружные поверхности стен и крыш делать из морозостойких материалов.

Морозостойкими являются материалы плотные или с малым водопоглощением (до 0,5%).

Морозостойкость материалов зависит не только от водопоглощения, но и от коэффициента размягчения. Материалы с коэффициентом размягчения ниже 0,7 практически неморозостойки.

Для определения морозостойкости материал замораживают до температуры — 15 °С, а затем погружают в воду комнатной температуры для оттаивания. Число циклов попеременного замораживания и оттаивания материала при условии, что прочность его в результате этого понизится не более чем на 30%, и характеризует морозостойкость материала.

«Материаловедение для штукатуров,
плиточников, мозаичников»,
А.В.Александровский

В строительстве понятие вязкости употребляется только применительно к материалам, находящимся в жидком состоянии. Вязкость — это свойство жидкостей оказывать сопротивление при перемещении одной их части относительно другой. Вязкость любой жидкости зависит от ее температуры и давления. С понижением температуры она резко возрастает, так же как и при повышении давления до нескольких сотен атмосфер. Вязкость принято…

Теплопроводность — это способность материала передавать тепло от одной своей поверхности к другой. Величина теплопроводности учитывается при подборе материалов для ограждающих конструкций — наружных стен, верхнего перекрытия жилых зданий. В жилых помещениях с наружными стенами из теплопроводных материалов зимой будет холодно, а стены промерзнут, будут мокнуть и отделка (штукатурка, окраска) разрушится. Чтобы избежать этого, стены…

Теплоемкость — свойство материала поглощать определенное количество тепла при нагревании и выделять его при охлаждении. Теплоемкость характеризуется коэффициентом теплоемкости (обозначается латинской буквой с), который равен количеству тепла, необходимого для нагревания 1 кг материала на 1 °С. В таблице приведены значения коэффициентов теплоемкости для некоторых материалов. Коэффициент теплоемкости некоторых материалов Наименование материала Коэффициент теплоемкости в ккал…

Звукопроводность — это свойство материала пропускать звук. Для изоляции помещений от шумов важно, чтобы строительные конструкции имели низкую звукопроводность. Оштукатуривают стены, в частности, и для того, чтобы уменьшить их звукопроводность. Различают два рода шумов, передаваемых стенами и перекрытиями: ударные и воздушные. Ударные шумы хорошо поглощаются пористыми материалами, для погашения воздушных шумов (от радиоприемников, громкой речи)…

Прочность — это способность материала сопротивляться разрушению под влиянием внутренних напряжений, возникающих в результате действия внешних нагрузок или других факторов. Внешние воздействия, которым подвергаются строительные материалы, могут вызывать у них напряжения сжатия, растяжения, изгиба, сдвига. Чаще всего строительные материалы работают на сжатие или изгиб. Прочность строительных материалов при сжатии, растяжении и т. п. характеризуется пределом…