Утепление отмостки и фундамента своими руками. Отмостка вокруг дома – делаем сами с соблюдением СНиПов и других требований Нужна ли отмостка мелкозаглубленном фундаменте

Отмостка представляет собой горизонтальное защитное покрытие шириной около 1-2 метров, расположенное по периметру здания. Конструкция должна быть водоустойчивой, а в некоторых случаях и утепленной. Защитный слой должен плотно прилегать к вертикальным наружным стенам цоколя или фундамента. В СНиП 2.02.01–83 указано, что возле любого объекта устраивается отмостка. Для устройства защитного слоя используются различные материалы, к готовой конструкции предъявляются одинаковые требования - гидроизоляция, прочность, утепление.

Основные требования нормативной документации

Ширина защитного слоя определяется в зависимости от просадочности грунта. Лессовые или глинистые почвы имеют разный показатель, он определяется в лабораторных условиях. По нормам СНиП существует два основных типа:

  • I тип. Сюда относят почвы, в которых просадка под действием собственного веса отсутствует или составляет не больше 5 см. Основные нагрузки конструкция будет испытывать от внешних воздействий;
  • II тип. В данном случае, кроме просадки от нагрузок извне, возможно проседание под собственным весом на высоту более 5 см.

Документацией также определяется ширина отмостки. Если конструкция устраивается на грунтах первого типа, то параметр не меньше 1,5 метра, а для почв второго типа - не менее 2 метров. При строительстве на просадочных почвах используются все меры для закладки ниже подвижного слоя и дополнительно применяются специальные технологии. На нормально несущих почвах минимальная ширина конструкции составляет 0,8-1,0 метра. Обязательно учитывается карнизный свес кровли, отмостка должна быть шире его размера на 20-30 см.

В СНиП особых требований к толщине защитной конструкции не предъявляется. По нормативной документации, после выработки почвенно-растительного слоя устраивается и трамбуется основа из песка, глины и щебня. Толщина такой подготовки должна быть не меньше 15 см. Затем выполняется устройство тепло- и гидроизоляционного слоя. Высота отмостки должна быть больше нулевого уровня на 5 см и более. Если планируется использовать конструкцию для пешеходного движения, то увеличиваются требования к ширине и прочности.

Требования к уклону защитного слоя

В соответствии с СНиП необходимо устраивать конструкцию с уклоном не меньше 10 промилле в сторону от стены здания. Это обозначает, что на 1 метр защитного слоя уклон составляет больше 1 см. Максимальное значение уклона не должно быть больше 10 см на метр ширины. Если устраивать покрытие с более высоким наклоном, поток воды стекает с высокой скоростью, что приведет к разрушению внешнего края конструкции. Часто на внешней стороне отмостки предусматривают водоприемные желоба с продольным уклоном.

Контролируют параметры наклона с помощью уровня или нивелира. После устройства тепло- и гидроизоляционного слоев показатель должен соответствовать первоначальному значению. Для этого контроль уклона осуществляют на всех этапах проведения работ.

С точки зрения материальных вложений мелкозаглубленный фундамент является оптимальным решением при возведении малоэтажных домов. Но в этом случае потребуется утепленная отмостка и цоколь, особенно если строительство ведется на пучинистых грунтах. Данная технология поможет оградить почву от промерзания вблизи строения, сохранить фундамент от просадок и деформаций, а стены – от трещин и разрушений.

Когда требуется утепление

Для чего нужна отмостка, знает даже школьник. Но далеко не каждый взрослый сможет ответить на вопрос - зачем ее утеплять. Дело в том, что делать это нужно только в двух случаях:

  • при малозаглубленном фундаменте;
  • при наличии отапливаемого цокольного этажа.

В функции отмостки, расположенной по периметру коробки, входит защита фундамента и цокольной части от прямого проникновения дождевой или паводковой воды непосредственно под строение. Утепление отмостки при мелкозаглубленном ленточном фундаменте, к тому же, предотвращает промерзание грунта снаружи подземной конструкции и не допускает проникновения морозных явлений в подполье. Это особенно важно в случае возведения дома на участке с пучинистыми грунтами. Дело в том, что промерзая и увеличиваясь в объеме, они станут выталкивать фундамент вверх, а в весенний период будут неравномерно оттаивать. А это чревато усадками, деформациями и другими неприятностями.

При глубоком заложении фундамента отмостка в утеплении не нуждается.



Чем утепляют отмостку

Технология допускает использование нескольких материалов для утепления цоколя и отмостки после возведения мелкозаглубленного ленточного фундамента. Это:

  • пенополиуретан;
  • плиты экструдированного пенополистирола;
  • пенопласт;
  • керамзит;
  • минеральная вата и др.

Глубина закладки и толщина утеплителя напрямую зависит от его технических характеристик и климатических условий региона строительства. Современные вспененные материалы даже при сравнительно малой толщине «теплого» слоя считаются более эффективными, нежели минеральная вата и керамзит, поэтому в последнее время они стабильно пользуются спросом. Но необходимо помнить о том, что вне зависимости от выбора теплоизоляционного материала должна выполняться гидроизоляция конструктивных элементов строения и слоев отмостки. Технология определяет данный этап как важный в связи с тем, что отсутствие гидроизоляции делает утепление абсолютно бесполезным.

Вспененные материалы практически не имеют недостатков и обладают мночисленными преимуществами:

  • небольшим весом;
  • малой теплопроводностью;
  • высокой морозостойкостью;
  • практически нулевым водопоглощением;
  • отсутствием процессов гниения и распада;
  • долговечностью;
  • экологичностью.

Технология укладки плит снаружи дома достаточно проста и не требует специальных знаний.

Следует отметить, что пенопласт лишен достоинств, которыми обладает экструдированный пенополистирол, известный в народе как «пеноплекс» (что является, на самом деле, торговой маркой). Пенопласт набирает влагу, после чего теряет теплостойкость, но данный недостаток решается устройством надежной гидроизоляции. Другие отрицательные свойства материала относятся к его хрупкости и слабой прочности, что приводит к нарушению целостности отмостки.

Плиты пенопласта могут повредиться не только от механического воздействия снаружи, но и от подвижек грунта. В первом случае защитить утепленную отмостку от разрушения можно, укрепив верхний слой тротуарной плиткой, камнем, слоем асфальта или бетона, а во втором – лишив плиты какого-либо контакта с пучинистыми грунтами. Единственным преимуществом пенопласта является его низкая стоимость, по сравнению с аналогичными утеплителями, но исправление результата такой экономии может оказаться затратным.

Более подходящим вариантом для утепления снаружи мелкозаглубленного фундамента и отмостки является экструдированный пенополистирол. Его эксплуатация может производиться в широком температурном диапазоне, поэтому материал используется как в южных, так и северных регионах страны.

Пенополиуретан распыляется по поверхности равномерным слоем. Покрытие не имеет швов, не деформируется при подвижках грунта и наносится достаточно быстро. Но технология требует наличия специального оборудования и присутствия квалифицированных работников. В связи с этим, частные домовладельцы редко выбирают вариант утепления отмостки пенополиуретаном.

Процесс утепления плитами пенополистирола

Работы по утеплению мелкозаглубленного фундамента рекомендуется проводить на стадии возведения дома, еще до выполнения обратной засыпки пазух, но уже после устройства гидроизоляции. Но нередко проблемы возникают уже в ходе эксплуатации дома, когда к подземной части открытого доступа нет. В этом случае по периметру коробки выкапывают траншею до уровня подошвы ленточного фундамента, после чего проверяют состояние и целостность гидроизоляции. При необходимости ее обновляют.

Вначале на подготовленную вертикальную поверхность наклеивают пенополистирольные плиты. На углах дома закладывают толщину утеплителя, увеличенную в 1,5-2 раза по сравнению с рядовыми листами. Снаружи утеплитель защищают специальной профилированной пленкой. Далее производят засыпку пазух с послойной утрамбовкой до отметки основания отмостки.

Работы следует выполнять аккуратно, во избежание повреждения защитной пленки или листов, иначе дефектные участки придется переделывать.

Учитывая ширину отмостки (60-100см), которая должна выступать за пределы дома как минимум на 20см больше навеса крыши, подготавливается траншея по всему периметру дома. Ее глубина для южных и средних широт составляет, как правило, 20см, а для северных – 40см. Дно траншеи уплотняется, после чего укладывается слой гидроизоляции и 10-20-сантиметровая песчаная подушка. Сверху кладутся пенополистирольные листы, далее – песок или песчано-гравийная смесь, затем – кладочная сетка.

При необходимости укладки плит утепления в два ряда, следует обратить внимание на расположение стыковочных швов. Они не должны совмещаться в вертикальном направлении. Для удобства бетонирования, выше бровки траншеи устанавливается съемная опалубка.

На последнем этапе отмостка заливается бетоном с соблюдением проектного уклона. Чтобы бетонная поверхность в процессе эксплуатации не трескалась, на расстоянии 2,5-3м по длине следует устраивать поперечные деформационные швы. Их выполняют с помощью обмазанных битумом деревянных реек, установленных «на ребро».

Верхнее покрытие отмостки должно быть водонепроницаемым. Это может быть, к примеру, облицовка тротуарной плиткой, окрашивание, асфальтирование или железнение бетона.

Данные: дом 6х9 в 2 этажа + веранда 3х3, каркас дома полностью брусовой 150х150, фундамент - лента (глубина залегания от 0 до 30 см, т. к. участок не ровняли и он имеет естественный уклон, но до чернового пола от 0,5 до 1 метра, т. к. доставал грунт изнутри, засыпал песок, проливал песок, стелил рубероид и сверху еще песок, стенки фундамента внутри промазаны оч густой битумной гидроизоляцией, а черновой пол пропитан отработанным маслом, в том числе торцы и лаги).

Причина изготовления отмостки: сырость, лёд под домом.

Ход работ:
1 этап - был сделан угол 6х9 со стороны забора и посадок (где не ходим практически, но откуда поступает вода/снег в основном по весне (т.е. верхняя точка). Это было еще в 2014 году, эффект - стало существенно суше и я решил отложить продолжение на потом.

2 этап - неделю назад настало это потом и я заказал 20 кубов песка, а щебень остался еще с прошлого раза... Ну и наконец-то я всё пофоткал.

Итак приступим:
1. Отступил от фундамента 60 см в начале и конце, в моем случае пролёт составил 12 метров (9 дом + 3 веранда)
2. Натянул шнурку
3. Вытащил землю на 1 штык лопаты по всей длине и ширине

4. По правому (дальнему от фундамента) краю углубился еще на 2,5 штыка лопаты, на ширину самого штыка лопаты.

5. От фундамента (можно приклеить к нему) раскатал в траншею гидроизоляционную плёнку (материал на ощупь, как раньше были сумки клетчатые у торгашей, НЕ МЕМБРАНЫ, ОНА НЕ ДОЛЖНА ПРОПУСКАТЬ ВЛАГУ И БЫТЬ ПЛОТНОЙ).
НАХЛЕСТ ПЛЁНКИ ДОЛЖЕН БЫТЬ ПО ПУТИ СТОКА ВОДЫ ЭТО ВАЖНЫЙ МОМЕНТ!

6. Засыпаем песок, тромбуем ногами, затем проливаем из шланга (можно пару дней подряд)
7. Засыпаем гравием, щебнем, мраморной крошкой - чем хотите.

П. С. На последнем фото ширина больше, т. к. я копал еще дополнительно в ширину на 1,2 метра, т. к. моя отмостка совмещена с дорожкой вдоль дома из плитки. В итоге еще получился и отличный дренаж вокруг дома.

Я перечитал много всяких вариантов, и решил, что моими силами и средствами реализуем именно такой и он мне необходим т. к. почва на 2 штыка лопаты чернозём, потом глина (плохой дренаж + пучинистый и ломает бетонные отмостки на раз-два).
Всё делал один.
На все раскопки ушло 2 дня с 10 утра и до 23 вечера, перерыв только 1 на 30 минут и пару раз присесть (почти 15 кубов земля+глина).
Закопать (почти 15 кубов песка) + уложить плитку (22 метра квадратных 30х30 см) еще 3 дня, плитку клал впервые, просто потому, что жене захотелось дорожку, а не хотелось платить за работу, ну и я типа всё равно копаю...) Не заморачивался особо с ровностью плитки, главное чтобы не "гуляла", т. к. после зимы, не ясно как она себя поведет (поэтому и за укладку не вижу смысла платить...
Итогового фото пока нет, т. к. не посажены кусты и не установлено освещение вдоль дорожки...

И напоследок: для диванных экспертов и просто экспертов, прорабов и прочего жулья - мне не интересны ваши советы, этот материал предназначен для тех, кто хочет с минимальными затратами сил и средств, отвести влагу от дома...

Втрое повысить ресурс здания позволяет утепление мелкозаглубленного ленточного фундамента по специальной технологии. При моделировании реальных эксплуатационных условий было выявлено, что оптимальной схемой теплоизоляции МЗЛФ является оклеивание наружных стенок ленты пенополистиролом 8 см толщины, размещение его горизонтально на уровне подошвы (30 см) шириной 60 см по периметру от фундамента наружу (толщина 5 см).

Наружный слой теплоизолятора на фундаментной ленте решает несколько задач:

  • удерживает геотермальное тепло недр – грунт под зданием не промерзает, силы морозного пучения возникнуть не могут;
  • смещает тепловой контур, точку росы наружу – актуально для техподполья, эксплуатируемого подземного этажа, на наружных стенах которого гарантированно не выступит влага.

Однако удержать тепло недр исключительно облицовкой фундамента теплоизолятором невозможно. незначительна, поэтому требуется увеличение периметра. Для этого часто используется утепленная отмостка – бетон по слою экструдированного пенополистирола с уклоном от стены здания. Однако компьютерное моделирование с заложенными реальными характеристиками конструкционных материалов доказало низкую эффективность этого способа:

Самым экономичным вариантом для бюджета строительства является теплая отмостка шириной 60 см листом пенополистирола 5 см толщины + вертикальный 5 см слой ПСБ-С на высоту цоколя (от уровня земли до начала кладки стены) Рис. 1.

Рис.1. Схема распределения тепла при утеплении отмостки и цоколя МЗЛФ.

Данная технология годится лишь для грунтов с низким содержанием глины, поскольку остаточная пучинистость превышает 50%;

Если оклеить теплоизолятором всю высоту ленты МЗЛФ (отметка -30 см), оставив утепленную отмостку, этот показатель снизится до 40% Рис. 2.

Рис. 2. Схема распределения тепла при утеплении отмостки и ленты МЗЛФ на всю глубину.

При увеличении периметра теплового контура (90 см отмостка от фундамента) пучинистость снижается еще на 5 – 7%, резко повышая трудозатраты (расширение траншеи, увеличение земляных работ, расхода материалов). Увеличение толщины пенополистирола либо ПСБ-С так же не избавляет от сил пучения под подошвой основания коттеджа целиком.

Однако если перенести утеплитель на уровень подошвы – выстелить дно траншеи на 60 см по периметру, силы пучения под ж/б конструкциями исчезают полностью. Рис. 3.

Рис.3. Схема распределения тепла при утеплении подошвы и ленты МЗЛФ.

Материалы и технологии утепления фундамента

Эффективнее всего укладывать горизонтальную теплоизоляцию на уровне подошвы мелкозаглубленного фундамента. Вертикальная теплоизоляция должна закрывать весь фундамент от подошвы до верхушки цоколя.

Лучшими вариантами для отапливаемых зданий являются технические решения на основе экструдированного пенополистирола, с учетом существующих нормативов СНиП:

  • 52.01 – конструкции из железобетона;
  • 23.01 – климатология в строительстве;
  • 12.01 – организация строительства;
  • 3.04.01 – покрытия для отделки, изоляции;
  • 3.02.01 – фундаменты, основания, земляные сооружения;
  • 2.03.11 – антикоррозионная защита конструкций;
  • 2.02.01 – основания сооружений, зданий;
  • 2.01.07 – воздействия, нагрузки.
  • вертикально расположенные плиты пенополистирола по поверхности ленты минимум на 1 м вверх от подошвы;
  • горизонтальный слой из этого же материала по периметру подошвы;
  • засыпка непучинистыми материалами, толщина песчаной подушки вдвое больше гравийной засыпки, расположенной поверх нее;
  • защита теплоизоляционного слоя отмосткой из водонепроницаемого материала (заступает на 10 – 20 см).

Данный вариант подходит, как для пола по грунту с теплоизолятором внутри стяжки, так и для полов по плитам перекрытий. В неотапливаемых зданиях рекомендовано расположение теплоизолятора под подошвой фундамента по всему периметру. В этом случае листы утеплителя закладываются в опалубку поверх подушки из нерудного материала перед заливкой или монтажом блоков ФБС.

Помимо снижения касательных вспучивающих усилий, данная технология практически полностью исключает подъем ленты грунтом. Во многих современных проектах вокруг отапливаемых помещений коттеджа присутствуют пристройки без обогрева – террасы, гаражи, веранды. При теплоизоляции постройки это необходимо учесть, заложив под весь периметр этих помещений ЭППС. В противном случае ленту может порвать на границах этих комнат из-за неравномерного проседания/подъема.

Дачные, садовые жилища сезонной либо временной эксплуатации можно строить без проекта. Поэтому ошибки при утеплении основания возникают здесь чаще. Специалисты рекомендуют приравнивать эти постройки к неотапливаемым, выстилать теплоизолятор под всем периметром ленты. Боковое оклеивание вертикальных поверхностей фундамента под землей в этом случае не эффективно, кроме расхода средств владелец ничего не получит.

Таким образом, рекомендуется уложить дрены после строительства фундаментной ленты, выстелить горизонтальный слой теплоизолятора, смонтировать на наружной поверхности МЗЛФ пенополистирол. После чего, засыпать траншею песком (послойное уплотнение каждых 10 – 20 см), щебнем, изготовить отмостку из бетона, брусчатки, прочих водонепроницаемых материалов. При ограниченном бюджете указанным способом можно обработать хотя бы углы коттеджа.

Мостики холода возникают при нарушении целостности слоя теплоизолятора. Если базальтовая, стеклянная вата ввиду высокой эластичности самостоятельно заполняет щели в стыках плит, то для экструдированного пенополистирола их необходимо запенивать.

Слой утеплителя не в состоянии в полной мере защитить бетонные конструкции от влаги. Поэтому оклеиванием теплоизолятором производится после гидроизоляции конструкции. От комков, крупного мусора, прочих механических повреждений ЭППС защищается дорнитом, геотекстилем.

Производители нетканых материалов этого типа часто советуют укладывать их перед засыпкой песчаной подушки. Делать этого категорически не рекомендуется, так как снижается эффективность уплотнения нижнего слоя. Песок не может внедриться в грунт, разбавить пучинистую почву, возможны подвижки даже при соблюдении технологии.

Минеральная вата обычно используется в наземных мокрых или вентилируемых фасадах, где требуется повышенная пожаробезопасность конструкций. Под землей этот материал легче намокает, на 50 – 70% теряет теплоизоляционные свойства. С мягким утеплителем сложнее работать при оклеивании вертикальных поверхностей (требуется дополнительная фиксация анкерами).

Экологически безопасные утеплители стоят минимум вдвое дороже пенополистирола, смысла «закапывать в землю» увеличенный бюджет строительства нет. Поэтому наиболее востребованы в технологиях теплоизоляции МЗЛФ следующие материалы:

  • URSA, Технониколь, Пеноплэкс, Техноплекс – экструдированные пенополистирольные плиты;
  • ПС – прессованный пенополистирол зарубежных фирм;
  • ПСБ-С, ПСБ – продукт фирмы Basf.

Застройщик может выбрать любой из этих утеплителей в зависимости от бюджета и характеристик материалов.

Консервация на зиму

Даже большинство профессионалов не знают, что оставлять недавно залитый фундамент в зиму опасно. Основание без нагрузки не способно уравновесить силы пучения собственной массой. При этом отсутствует обогрев периметра по причине не установленного отопительного оборудования.

Временная защита МЗЛФ выглядит следующим образом:

  • периметр (фундамент + 1 м грунта вокруг него) укрывается двойным слоем пленки (не рекомендуется полиэтилен, лучше выбрать ПВХ);
  • конструкции защищаются теплоизолятором (керамзит, солома, минвата, шлак, опилки) рис. 4;
  • монтаж элементов снегозадержания – щиты по периметру пятна застройки.

Рис.6. Консервация МЗЛФ на зиму.

Плотность почвы можно уменьшить механическими способами, вспахав, перекопав грунт на участке. Глубины 15 см (штык лопаты) для этого вполне достаточно. Рис. 5;

Рис.5. Консервация МЗЛФ на зиму.

Типичные ошибки при самостоятельном утеплении

При проведении работ по теплоизоляции основания дома домашний мастер часто допускает ошибки, приводящие к снижению эффекта, напрасной трате средств. Основными из них являются мостики холода внутри конструкции:

  • неутепленный цоколь – оклеена листами ПСБ-С лишь подземная часть;
  • отсутствие боковой изоляции плавающей стяжки – холод проникает сквозь кирпичную кладку по плите перекрытия рис. 6;
  • нет горизонтального слоя на уровне подошвы – промерзание железобетона в нижнем слое грунта;
  • кирпичный фасад, уходящий под землю – даже при наличии вертикальной, горизонтальной теплоизоляции, кладка становится мостиком холода рис. 7;

Рис. 6. Типичные ошибки допускающие мостики холода.

Рис. 7. Типичные ошибки допускающие мостики холода.

Как повысить эффективность утепления МЗЛФ

В морозы содержащиеся в грунте влажные частички глины расширяются, что и приводит к силам пучения. В ленточном фундаменте, заглубленном ниже отметки промерзания, они не действуют на подошву, зато пытаются сдвинуть ленту вбок, действуя на вертикальные плоскости. В МЗЛФ, наоборот, боковые усилия на ленту отсутствуют, под подошвой основания остаются. Их можно снизить несколькими способами:

  • замена пучинистого грунта нерудным материалом – традиционная подушка из песка, щебня, смеси ПГС;
  • дренаж – на уровне подошвы фундамента по периметру здания укладываются гофротрубы со щелевой или круглой перфорацией, глина не насыщается влагой, силы пучения снижаются;
  • утепление – лента оклеивается утеплителем, уширяется по периметру на уровне подошвы (достаточно 60 – 90 см), что позволяет сохранить геотермальное тепло земли.

На практике используют комбинированный способ, применяя все указанные технологии для максимально возможного эффекта. Помимо прочего, дренаж позволяет продлить эксплуатационный ресурс бетонных конструкций, утепленная лента повышает качество эксплуатации подвалов, цокольных этажей. Приведенные рекомендации позволят при минимальном бюджете добиться высокого ресурса конструкций, избежав ошибок самостоятельного строительства.

Совет! Если вам нужны подрядчики, есть очень удобный сервис по их подбору. Просто отправьте в форме ниже подробное описание работ которые нужно выполнить и к вам на почту придут предложения с ценами от строительных бригад и фирм. Вы сможете посмотреть отзывы о каждой из них и фотографии с примерами работ. Это БЕСПЛАТНО и ни к чему не обязывает.

СИСТЕМА НОРМАТИВНЫХ ДОКУМЕНТОВ

В АГРОПРОМЫШЛЕННОМ КОМПЛЕКСЕ МИНИСТЕРСТВА СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ОТРАСЛЕВЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ

ПРОЕКТИРОВАНИЕ МЕЛКОЗАГЛУБЛЕННЫХ ФУНДАМЕНТОВ МАЛОЭТАЖНЫХ СЕЛЬСКИХ ЗДАНИЙ НА ПУЧИНИСТЫХ ГРУНТАХ

Министерство сельского хозяйства Российской Федерации

ПРЕДИСЛОВИЕ

1. РАЗРАБОТАНЫ: ФГУП «ЦНИИЭПсельстрой» Минсельхоза России, с участием ГУП «Мосгипронисельстрой»; НИИ Оснований и подземных сооружений Госстроя РФ.

ВНЕСЕНЫ: ФГУП «ЦНИИЭПсельстрой»

3. УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ: Заместителем Министра сельского хозяйства Российской Федерации. (10.11.2004 г.)

4. СОГЛАСОВАНЫ: Департаментом социального развития и охраны труда Минсельхоза России (05.11. 2004 г.)

5. РАССМОТРЕНЫ: Департаментом экономики и финансов Минсельхоза России (письмо от 19.02.2004 г. № 237-08/354).

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Настоящие нормы предназначены для проектирования и устройства мелкозаглубленных фундаментов зданий (жилых, культурно-бытовых, производственных складов, гаражей и других малоэтажных зданий) до 3-х этажей включительно.

1.2. Нормы не распространяются на фундаменты зданий с распорными конструкциями и фундаменты под оборудование с динамическими нагрузками.

1.3. Нормы не распространяются на основания, сложенные вечномерзлыми, просадочными, набухающими и засоленными грунтами, и на основания зданий, возводимых в сейсмических районах, на подрабатываемых и закарстованных территориях.

2. НОРМАТИВНЫЕ ССЫЛКИ

3.8. По прочности и трещиностойкости мелкозаглубленные фундаменты должны удовлетворять требованиям СНиП 2.03.01-84* .

3.9. Мероприятия по антикоррозийной защите фундаментов следует осуществлять в соответствии со СНиП 2.03.11-85 .

3.10. Работа по подготовке строительной площадки и устройству фундаментов должны выполняться в соответствии с требованиями СНиП 3.02.01-87 .

4. ОЦЕНКА МОРОЗНОЙ ПУЧИНИСТОСТИ ГРУНТОВ ОСНОВАНИЯ

4.1. К пучинистым относятся глинистые грунты (в соответствии с ГОСТ 28622-90 они подразделяются на глины, суглинки и супеси), пески пылеватые и мелкие, а также крупноблочные грунты с содержанием глинистого заполнителя более 15% общей массы, имеющие к началу промерзания влажность выше определенного уровня.

Крупнообломочные грунты с песчаным заполнением, пески гравелистые, крупные и средние, не содержащие глинистых фракций, считаются непучинистыми при любом уровне безнапорных подземных вод.

4.2. Количественным показателем пучинистости грунта является относительная деформация морозного пучения ε fh равная отношению подъема ненагруженной поверхности грунта к толщине промерзающего слоя.

При выявлении подземных вод на обследуемом участке глубину выработок следует увеличить в соответствии с данными табл. 2, характеризующими минимальное расстояние Z между нормативной глубиной промерзания d fh и глубиной залегания подземных вод d w .

Таблица 2

Выработки должны закладываться в наиболее характерных местах площадки (на повышенных и пониженных участках) в пределах контура проектируемого здания.

4.6. Для определения относительной деформации морозного пучения по физическим характеристикам грунта необходимо установить:

Гранулометрический состав грунта, классифицирующий его вид;

Плотность грунта в сухом состоянии ρ d ;

Плотность твердых частиц грунта ρ s ;

Пластичность грунта: влажность на границе раскатывания (W p ) и текучести (W L , число пластичности J p = W L - W P ;

Расчётную предзимнюю влажность W в слое сезонного промерзания грунта;

Глубину сезонного промерзания грунта d fh .

4.7. Относительная деформация морозного пучения грунта определяется по графикам () с использованием параметра R f , вычисляемого по формуле

Здесь W cr - критическая влажность, доли ед., ниже значения которой в промерзающем пучинистом грунте прекращается перераспределение влаги, вызывающей морозное пучение; определяется по графикам ();

ρ w - плотность воды, т/м 3 ;

М 0

W sat - полная влагоемкость грунта, доли ед., определяется по формуле

(2)

Остальные обозначения те же, что в п.4.6.

4.8. Расчетная предзимняя влажность грунтов определяется в соответствии с . При этом допускается, что поверхностный сток осадков, выпавших на площадке строительства перед изысканиями в летне-осенний период, одинаков со стоком в предзимний период.

5.1.3. На среднепучинистых (при h fl > 5 см), сильнопучинистых и чрезмерно пучинистых грунтах ленточные фундаменты всех стен здания должны быть жестко соединены между собой в единую конструкцию - систему перекрестных балок.

5.1.4. Мелкозаглубленные столбчатые фундаменты на среднепучинистых грунтах (при h fl > 5 см), сильнопучинистых и чрезмерно пучинистых грунтах должны быть жестко соединены между собой фундаментными балками, объединенными в единую систему.

5.1.5. При устройстве столбчатых фундаментов необходимо предусматривать зазор между нижними гранями фундаментных балок и планировочной поверхностью не меньше расчетной деформации (подъема) ненагруженного основания.

5.1.6. При недостаточной жесткости стен зданий, строящихся на сильнопучинистых и чрезмерно пучинистых грунтах, следует производить их усиление путем устройства армированных или железобетонных поясов в уровне перекрытий.

5.1.7. Секции зданий, имеющие разную высоту, следует устраивать на раздельных фундаментах.

5.1.8. Примыкающие к зданиям веранды на сильнопучинистых и чрезмерно пучинистых грунтах следует возводить на фундаментах, не связанных с фундаментами зданий.

5.1.9. Протяженные здания необходимо разрезать по всей высоте на отдельные отсеки, длина которых принимается: для среднепучинистых грунтов (при h fl > 5 см) до 30 м, сильнопучинистых - до 24 м, чрезмерно пучинистых - до 18 м.

5.2. Расчет мелкозаглубленных фундаментов.

5.2.1. Расчет мелкозаглубленных фундаментов производится в следующей последовательности:

а) на основе материалов изысканий определяется степень пучинистости грунта основания и в зависимости от нее выбирается конструкция фундамента в соответствии с ;

б) задаются предварительные размеры подошвы фундамента, глубина его заложения, толщина песчаной (песчано-гравийной) подушки;

в) в соответствии с требованиями СНиП 2.02.01-83* производится расчет основания по деформациям; в случае, когда под подошвой подушки залегает грунт меньшей прочности, чем прочность материала подушки, необходимо выполнить проверку этого грунта согласно СНиП 2.02.01-83* ;

г) выполняется расчет основания по деформациям пучения грунта.

Таблица 3 .

Конструктивные особенности зданий

Предельные деформации оснований фундаментов

подъем, S u , см

относительные деформации (ΔS / L u )

вид

значение

Бескаркасные здания с несущими стенами из:

панелей

относительный прогиб или выгиб

0,00035

блоков и кирпичной кладки без армирования

0,0005

Блоков и кирпичной кладки с армированием или железобетонными поясами при наличии сборно-монолитных (монолитных) ленточных или столбчатых фундаментов со сборно-монолитными фундаментными балками

Здания с деревянными конструкциями

на ленточных фундаментах

0,002

на столбчатых фундаментах

относительная разность подъемов

0,006

6. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ МЕЛКОЗАГЛУБЛЕННЫХ ФУНДАМЕНТОВ НА ЛОКАЛЬНО УПЛОТНЕННОМ ОСНОВАНИИ.

6.1. Требования к грунтам и конструкции фундаментов на локально уплотненном основании.

6.1.1. К фундаментам на локально уплотненном основании относятся фундаменты в вытрамбованных (выштампованных) котлованах или траншеях, фундаменты из забивных блоков.

6.1.2. Характерной особенностью указанных типов фундаментов является наличие окружающей их уплотненной зоны грунта, которая формируется при вытрамбовывании или выштамповывании полостей в основании, погружении блоков путем забивки.

6.1.3. Глубину заложения фундаментов следует принимать равной 0,5 - 1 м.

6.1.4. Фундаменты должны иметь форму усеченной пирамиды с углом наклона граней к вертикали 5 - 10° и размеры верхнего сечения, большие размеров нижнего сечения.

6.1.5. Применение мелкозаглубленных фундаментов в вытрамбованных (выштампованных) котлованах или траншеях ограничивается следующими грунтовыми условиями: глинистые грунты с показателем текучести 0,2 - 0.7 и песчаные грунты (пылеватые и мелкие, рыхлые и средней плотности) при залегании подземных вод от подошвы фундаментов на расстоянии не менее 1 м.

6.1.6. Применение забивных блоков ограничивается следующими грунтовыми условиями: глинистые грунты с показателем текучести 0,2 - 0,8 и песчаные грунты (пылеватые и мелкие, рыхлые и средней плотности; при уровне подземных вод, отстоящем от планировочной отметки не менее чем на 0,5 м.

6.1.7. При h fi > 10 см (где h fi - расчётный подъём ненагруженного основания на уровне подошвы фундамента при пучении грунта природной структуры) фундаменты в вытрамбованных (выштампованных) котлованах и забивные блоки следует жестко соединять между собой фундаментными балками.

6.1.8. При h fi > 10 см фундаменты в вытрамбованных (выштампованных) траншеях следует армировать.

6.2. Расчет фундаментов на локально уплотненном основании.

6.2.1. Фундаменты следует рассчитывать по несущей способности грунта основания исходя из условия

где N - расчетная нагрузка, передаваемая на столбчатый фундамент или 1 м ленточного фундамента;

F d - расчетная несущая способность грунта основания столбчатого или 1м ленточного фундамента, определяемая в соответствии с ;

Y k - коэффициент надежности, принимаемый равным 1,25.

6.2.2. Основания фундаментов, устраиваемых на пучинистых грунтах, подлежат расчету по деформации морозного пучения грунтов. При этом наряду с требованиями . должно выполняться условие

где S OT - осадка фундамента после оттаивания грунта;

h fp - подъем фундамента силами пучения.

Расчет деформации пучения выполняется в соответствии с .

7. УКАЗАНИЯ ПО УСТРОЙСТВУ МЕЛКОЗАГЛУБЛЕННЫХ ФУНДАМЕНТОВ НА ЕСТЕСТВЕННОМ ОСНОВАНИИ

7. 1. К разработке траншей и котлованов при устройстве мелкозаглубленных фундаментов следует приступать только после того, как на строительную площадку будут завезены фундаментные блоки и все необходимые материалы и оборудование, чтобы процесс возведения фундаментов выполнялся непрерывно, начиная от устройства котлованов и траншей и кончая обратной засыпкой пазух, уплотнением грунта и устройством отмостки. Цель такого требования - комплексно выполнять все работы, не допуская увлажнения грунтов основания.

7.2. Все работы по подготовке площадок, а также по устройству фундаментов на пучинистых грунтах, как правило, следует выполнять в летнее время.

В зимнее время устройство фундаментов (особенно на пучинистых грунтах) требует повышенной культуры производства, технологичности и непрерывности всего процесса работ и приводит к удорожанию их стоимости.

7.3. При необходимости ведения работ в зимнее время грунт в местах устройства траншей и котлованов следует заранее утеплять для защиты от промерзания или произвести искусственное оттаивание.

7.4. Подготовка основания под мелкозаглубленный фундамент состоит из отрывки траншей (котлованов), устройства противопучинистой подушки (на пучинистых грунтах) или выравнивающей подсыпки (на непучинистых грунтах).

При устройстве подушки непучинистый материал отсыпается слоями толщиной не более 20 см и уплотняется катками, площадочными вибраторами или другими механизмами до плотности ρ d > 1,6 т/м 3 . При малых объемах работ допускается уплотнение материала подушки выполнять ручными трамбовками.

7.5. Траншеи для ленточных фундаментов следует отрывать узкими (0,8 - 1,5 м) с тем, чтобы пазухи с наружной стороны здания можно было перекрыть отмосткой и гидроизоляционным материалом.

7.6. После укладки фундаментных конструкций (или бетонирования) пазухи траншей (котлованов) должны быть засыпаны предусмотренным в проекте материалом с обязательным уплотнением.

7.7. При высоком уровне подземных вод и наличии на стройплощадке верховодки необходимо предусматривать меры по предохранению материала подушки от заиливания. Для этой цели обычно производят по контуру подушки обработку ее гравелистого или щебенистого материала вяжущими веществами или изолируют подушки от воздействия воды полимерными пленками.

7.8. Песчаную подушку, как правило, следует устраивать в теплое время года. В зимних условиях необходимо исключать смешивание материала подушки со снегом и мерзлыми включениями грунта.

7.9. Для отмостки следует применять керамзитобетон с плотностью в сухом состоянии от 800 до 1000 кг/м 3 . Укладку отмостки можно производить только после тщательной планировки и уплотнения грунта возле фундамента у наружных стен. Ширина отмостки должна обеспечивать перекрытие траншеи с целью исключения попадания в нее ливневых и паводковых вод. Керамзитобетонную отмостку целесообразно укладывать на поверхность грунта с целью меньшего водонасыщения материала. Следует избегать укладки керамзитобетона в отрытое в грунте корыто. Если же по конструктивным соображениям этого избежать нельзя, то необходимо предусмотреть устройство дренажа под отмосткой.

7.10. С целью уменьшения глубины промерзания грунта следует предусматривать задернение участка и посадку кустарниковых насаждений, которые аккумулируют отложение снега. Уменьшение глубины промерзания может быть достигнуто применением утеплителей, укладываемых под отмостку. Для исключения замачивания утеплители могут использоваться, например, в целлофановых мешках в виде матов.

7.11. Запрещается устраивать мелкозаглубленные фундаменты на промороженном основании. В зимнее время допускается устраивать мелкозаглубленные фундаменты только при условии глубокого залегания подземных вод с предварительным оттаиванием мерзлого грунта и обязательной засыпкой пазух непучинистым материалом.

7.12. При использовании мелкозаглубленных фундаментов в зданиях с подвалами стены последних должны быть рассчитаны на воздействие нагрузок от фундаментов.

8. УКАЗАНИЯ ПО УСТРОЙСТВУ МЕЛКОЗАГЛУБЛЕННЫХ ФУНДАМЕНТОВ НА ЛОКАЛЬНО УПЛОТНЕННОМ ОСНОВАНИИ

8.1. Вытрамбовывание полости в основании производится с помощью навесного оборудования, состоящего из трамбовки, направляющей штанги или рамы, обеспечивающих падение трамбовки строго в одно и то же место; каретки, с помощью которой трамбовка передвигается по направляющей штанге или раме.

8.2. Грузоподъемность механизмов, используемых для вытрамбовывания котлованов, должна быть не менее чем в 2,5 раза больше веса трамбовки.

8.3. При устройстве фундаментов в вытрамбованных котлованах необходимо соблюдать следующие требования:

Бетонирование фундаментов (установка сборных элементов) должно быть закончено не позднее 1 суток после окончания вытрамбовывания;

При расстоянии в свету между котлованами до 0,8 ширины фундамента вытрамбовывание производится через один фундамент, а пропущенных фундаментов - не менее чем через 3 суток после бетонирования предыдущих.

8.4. После вытрамбовывания котлованов (траншей) в них укладывается враспор монолитный бетон класса не ниже В15 или устанавливаются с добивкой сборные элементы, имеющие размеры, несколько превышающие размеры котлованов.

8.5. Укладка бетонной смеси и ее уплотнение выполняются в соответствии с проектом производства работ, типовыми технологическими картами и требованиями главы СНиП 3.03.01-87 . Бетонная смесь в котлован подается равномерными слоями толщиной, равной 1,25 рабочей части глубинного вибратора. Осадка конуса бетонной смеси должна быть 3 - 5 см.

Монтаж и устройство верхнего строения начинается после достижения бетоном 70% проектной прочности.

8.6. Выштамповывание котлованов или траншей осуществляется с помощью сваебойных агрегатов, путем погружения в грунт и последующего извлечения из него металлических штампов, имеющих те же размеры, что и возводимые фундаменты.

При устройстве фундаментов необходимо соблюдать требования п.п. 8.3.- 8.5.

8.7. При вытрамбовывании (выштамповывании) котлованов или траншей в зимнее время допускается промерзание грунта с поверхности на глубину не более 30 см.

8.8. При промерзании грунта на глубину более 30 см перед началом работ по вытрамбовыванию (выштамповыванию) котлованов или траншей следует производить оттаивание грунта на всю толщину промерзания на площади диаметром, равным 3 размерам трамбовки (штампа) в среднем сечении. Для ленточных фундаментов ширина пятна оттаянного грунта должна быть равной 3 размерам поперечного сечения фундамента в среднем сечении, длина - сумме длины фундамента и удвоенной ширины пятна оттаивания.

8.9. После вытрамбовывания (выштамповывания) котлованов или траншей до проектной отметки они должны закрываться утепленными крышками. Талое состояние грунта на стенках и дне полостей должно сохраняться до бетонирования фундаментов.

8.10. При глубине промерзания грунта более 30 см погружение забивных блоков осуществляется в следующей последовательности:

Бурение лидерных скважин на глубину, равную толщине мерзлого слоя грунта;

Диаметры скважин принимаются на 10 - 20 см больше ширины верхнего обреза блока.

Дальнейшая последовательность погружения блоков устанавливается с учетом свойств грунта основания:

а) для слабых глинистых грунтов с показателем текучести 0,6 и более и рыхлых водонасыщенных пылеватых песков:

забивка блока до проектной отметки;

б) для песков средней плотности и глинистых грунтов твердой, полутвердой и тугопластичной консистенции:

установка блока на точку погружения;

забивка блока на 0,5 - 0,7 проектной глубины;

засыпка песка средней крупности или крупного в пространство между стенками скважины и погружаемым блоком;

добивка блока до проектной отметки.

Примечание В случае (б) первоначальная забивка блоков производится на большую глубину в более прочных грунтах, на меньшую - в более слабых.

Приложение 1
Рекомендуемое
ОПРЕДЕЛЕНИЕ РАСЧЕТНОЙ ПРЕДЗИМНЕЙ ВЛАЖНОСТИ ГРУНТА

Значение расчетной предзимней влажности определяется по формуле

где W n – средневзвешенное значение влажности грунта в слое d fn , полученное при изысканиях в летне-осенний период;

Ω с – расчетное количество осадков, мм, выпавших за летний период t e (месяцы), предшествующий моменту проведения изысканий;

Ω ос - расчетное количество осадков, мм, выпавших за предзимний (до установления среднемесячной отрицательной температуры воздуха) период t oc (месяцы), равный по продолжительности периоду t e ; значения Ω с и Ω oc определяются по среднемноголетним данным «Справочника по климату» (Л., Гидрометеоиздат, 1968).

Продолжительность периода t e , сут., определяется отношением

при t e < 90°(2)

где К - коэффициент фильтрации, м/сут.

Ориентировочные значения t e для отдельных видов пылевато-глинистых грунтов составляют: для супеси - 0,5 - 1 мес., для суглинков - 2 мес., для глин - 3 мес.

Приложение 2
Рекомендуемое
КОНСТРУКТИВНЫЕ РЕШЕНИЯ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ ФУНДАМЕНТОВ

Для обеспечения совместной работы элементов мелкозаглубленных ленточных фундаментов следует применять конструктивные решения, приведенные на рис. 1.

Рис.1 Конструктивные решения соединений элементов мелкозаглубленных ленточных фундаментов:

а) сборно-монолитный фундамент из железобетонных блоков с выпусками арматуры;

б) фундамент из бетонных блоков с армопоясами;

в) фундамент из бетонных блоков с железобетонным поясом;

г) монолитный железобетонный фундамент. 1 - монолитный бетон; 2 - сборные железобетонные блоки с выпусками арматуры; 3 - армированные пояса; 4 - железобетонный пояс; 5 - монолитный железобетон.

Примечание . При необходимости (определяется расчетом по СНиП 2.03.01-84*) армирование монолитных фундаментов производится каркасами.

Приложение 3
Рекомендуемое
РАСЧЕТ ДЕФОРМАЦИЙ ПУЧЕНИЯ ОСНОВАНИИЯ И ВНУТРЕННИХ УСИЛИЙ В ФУНДАМЕНТАХ

1. Расчет деформаций пучения основания и усилий в фундаментах выполняется в следующей последовательности:

а) производится расчет фундамента по устойчивости на воздействие касательных сил морозного пучения;

б) при предварительно принятых значениях глубины заложения фундамента и толщины подушки из непучинистого материала определяется - расчетная величина подъема ненагруженного основания h fi ;

в) рассчитывается средняя скорость пучения грунта, промерзающего под подошвой фундамента V fi :

г) определяется удельная нормальная сила пучения Р г ,

д) вычисляются подъем и относительная деформация основания под фундаментом h fp и l fp с учетом давления под его подошвой;

е) рассчитываются внутренние усилия в фундаменте, вызванные деформацией пучения грунта основания.

2. Устойчивость фундамента на действие касательных сил морозного пучения грунтов производится в соответствии со СНиП 2.02.04-88.

При этом коэффициент условий работы основания по боковой поверхности фундамента γ τ определяется по эмпирической зависимости:

где t - ширина, м, пазух траншей (котлованов), заполненных засыпкой из непучинистого материала.

3. В случае, если условие (1) не соблюдается, необходимо применять противопучинные мероприятия, в том числе увеличение ширины пазух, засыпаемых непучинистым материалом; обработка боковых поверхностей фундамента пластическими смазками, уменьшающими касательные силы пучения и др. Существенное снижение влияния касательных сил пучения на фундамент достигается, если его боковые грани выполнены наклонными, т.е. когда ширина верхнего обреза фундамента меньше ширины его подошвы.

где ε fh - относительная деформация морозного пучения грунта, доли ед., определяется по результатам испытаний грунтов или по графикам (см. рис.1);

d f - расчетная глубина промерзания грунта, см, определяемая по СНиП 2.02.01-83* .

5. Средняя скорость пучения грунта, промерзающего ниже подошвы фундамента определяется по формуле

где h fi - то же значение, что в п. 4;

t d - продолжительность периода, мес., промерзания грунта под фундаментом, равная

(5)

где t o - продолжительность зимнего периода, мес., определяется по СНиП 23-01-99 .

Значения d f и h n те же, что в п. 4 ().

Таблица 3

Отношение толщины подушки к ширине подошвы фундамента h п / b

Фундамент

Ленточный

Столбчатый при l / b

1,00

1,00

1,00

1,00

1,00

1,00

1,00

0,25

0,90

0,89

0,90

0,92

0,93

0,94

0,95

0,50

0,80

0,67

0,70

0,73

0,76

0,78

0,79

0,75

0.70

0,48

0,51

0,55

0,58

0,61

0,63

1,00

0,60

0,34

0,37

0,40

0,44

0,46

0,49

1,25

0,50

0,25

0,27

0,30

0,74

0,36

0,39

1,50

0,40

0,18

0,21

0,23

0,26

0,28

Примечание . Для промежуточных значений h П / b и l / b коэффициент β определяется по интерполяции.

η и η 1 - коэффициенты, значения которых определяются по графикам (рис. 4. и рис. 5).

Рис.3 . Зависимость ω от К при разных значениях .

По найденным внутренним усилиям в соответствии с требованиями СНиП 2.03.01-84* и СНиП II-22-81 производится расчет прочности мелкозаглубленного ленточного фундамента или фундаментной балки столбчатых фундаментов, а также конструктивных элементов стены здания.

Рис. 5 . Зависимость η 1 , от К при разных значениях .

Примечание . Допускается не производить расчет прочности элементов стены, если выполняется условия

13. Учитывая знакопеременный характер деформаций оснований из пучинистых грунтов (подъем в период промерзания и осадка при оттаивании), железобетонные элементы следует армировать одинаково в верхней и нижних частях сечений.

Приложение 4.
Рекомендуемое
МЕТОДИКА ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ГИБКОСТИ КОНСТРУКЦИЙ

1. Показатель гибкости конструкций здания определяется по формуле

(1)

где [EJ ] - приведенная жесткость на изгиб, кН.м поперечного сечения конструкций здания в системе фундамент - цоколь - пояс усиления - стена;

пояс усиления - стена;

L - длина стены здания (отсека), м;

С - коэффициент жесткости основания при пучении грунта, кН/м

Для оснований ленточных фундаментов

для оснований столбчатых фундаментов

где А i - площадь подошвы i -го фундамента, м 2 ;

п - число столбчатых фундаментов в пределах длины стены здания (отсека).

Значения P r , h fi , b - те же, что в .

где Е j , А j - соответственно модуль упругости, кПа, и площадь поперечного сечения, м, j -ой связи;

m - число связей между панелями;

d j - расстояние от j -ой связи до главной центральной оси поперечного сечения фундамента, м;

у о - расстояние от главной центральной оси поперечного сечения фундамента до условной нейтральной оси системы фундамент - стена здания, определяемое по формуле

(14)

в которой п - число конструктивных элементов в системе фундамент - стена.

Приложение 5
Рекомендуемое
РАСЧЕТ НЕСУЩЕЙ СПОСОБНОСТИ И ДЕФОРМАЦИЙ ПУЧЕНИЯ ФУНДАМЕНТОВ НА ЛОКАЛЬНО УПЛОТНЕННОМ ОСНОВАНИИ

1. Несущая способность основания забивного блока, фундамента в выштампованном и вытрамбованном котловане определяется по формуле

()

где γ у - коэффициент условий работы, принимаемый равным: 1 - для забивного блока; 0,95 - для фундамента в выштампованном котловане; 0,9 - для фундамента в вытрамбованном котловане;

F dσ - расчетная несущая способность основания на боковой поверхности фундамента, кН, при осадке s о = 8 см (определяется в соответствии с п. 2).

К о - коэффициент, равный отношению нагрузки, воспринимаемой подошвой фундамента, к общей нагрузке при осадке S o = 8 см, условно принимаемой за предельную (определяется по табл.1);

ξ - коэффициент, учитывающий нарастание осадки во времени, принимаемый равным: 0,4 - при J L ≤ 0,25; 0,3 - при 0,25 ≤ J L ≤ 0,6; 0,2 - при J L > 0,6;

S u - предельная средняя осадка основания, см, принимаемая согласно СНиП 2.02.01-83* .

Таблица 1

Расчетный показатель текучести грунта природной структуры J l , доли. ед.

Значения К о для фундаментов с отношением площади боковой поверхности А б к площади подошвы А п

≤0,48

0,43

0,39

≥0,34

≤0,45

0,41

0,36

≥0,32

≤0,42

0,38

0,34

≥0,30

≤0,36

0,32

0,30

≥0,26

Примечания: 1. Расчётный показатель текучести грунта принимается равным средневзвешенному значению его в пределах глубины, равной 1,7 d (где d - глубина заложения фундамента).

При промежуточных значениях J L и коэффициент К о определяется по интерполяции.

2. Несущая способность основания на боковой поверхности фундамента, кН, определяется по формуле

где V - равнодействующая сил отпора грунта по грани фундамента, кН (определяется в соответствии с п. 3);

α - угол наклона боковых граней фундамента к вертикали, град.;

А - площадь боковой поверхности грани фундамента, м 2 ;

φ у и С у - соответственно угол внутреннего трения, град., и удельное сцепление, кПа, уплотненного грунта (определяется по табл. 2).

Таблица 2

Расчётный показатель текучести грунта природной структуры J L , доли, ед.

φ у , град

С у , кПа

J L ≤ 0,1

φ II +1 о

0,8 С II

0,1 < J L ≤0,2

φ II +1 о

1.1 С II

0,2 < J L ≤0,5

φ II +2 о

1.6 С II

0,5 < J L ≤0,8

φ II +1 о

1.4 С II

3. Равнодействующая сил отпора грунта, кПа, определяется по формуле

,(3)

где λ - эмпирический коэффициент, кН/м (определяется в соответствии с п. 4);

d

b - ширина фундамента, м, на уровне поверхности планировки.

4. Значение коэффициента λ , тс/м 3 , определяется по формуле

()

где γ a - коэффициент условий работы, принимаемый равным 1 - при α = 10° и 0,6 - при α = 5°;

λ о - постоянная величина, равная 4.10 4 кН/м 4 ;

d 1 - глубина заложения фундамента, равная 1 м;

J L и d - те же значения, что в п. 1 и п. 3.

Примечание. При промежуточных значениях α коэффициент у α определяется по интерполяции.

5. Несущую способность оснований забивных блоков, фундаментов в выштампованных, в вытрамбованных котлованах, устраиваемых в песках мелких и пылеватых, допускается определять в соответствии с п.п. 1 - 4, принимая J L равным соответственно 0,3 и 0,4.

6. При прочих равных условиях расчетную нагрузку на фундамент в вытрамбованных траншеях допускается принимать равной . Значение F d определяется в соответствии с п. 1 по .

7. Подъем силами пучения фундамента в вытрамбованном (выштампованном) котловане, забивного блока определяется по формуле

()

где V - относительное выпучивание ненагруженного фундамента, определяемое по эмпирической зависимости

в которой

α - угол наклона боковых граней фундамента к вертикали, град;

d f и d - соответственно глубина промерзания грунта и глубина заложения фундамента;

h f - деформация пучения (подъем) ненагруженной поверхности грунта природной структуры, определяется в соответствии с .

N - расчетная нагрузка на фундамент (для второй группы предельных состояний), кН;

(8)

в которых d у - глубина зоны уплотнения, определяемая из выражения

(9)

ε fh - отношение средней относительной деформации пучения уплотненного грунта к средней относительной деформации пучения грунта природной структуры, равное

где W и W p - соответственно природная влажность грунта и влажность на границе раскатывания.

9. Подъем фундамента в вытрамбованной траншее определяется по при действующей на него силе пучения, равной

где d - глубина заложения фундамента, м;

п - число боковых граней фундамента, контактирующих с промерзающим грунтом, равное 1 и 2 соответственно для отапливаемых и не отапливаемых зданий;

.

При вычислении показателя гибкости К коэффициент жесткости основания следует принимать: для ленточного фундамента

(14)

для столбчатого фундамента

(15)

где h f - подъем ненагруженной поверхности грунта, м;

l 1 = 1м,

п - число столбчатых фундаментов в пределах длины здания L , м.

При определении ω значения принимаются: для ленточного фундамента для столбчатого фундамента

где q - нагрузка, передаваемая на фундамент 1 м стены, кН/м.

12. Внутренние усилия в системе фундамент (фундаментная балка) - стена здания и в отдельных конструктивных элементах вычисляются в соответствии с , .

При определении η и η 1 значения принимаются согласно п.11 настоящего Приложения.

Приложение 6.
Справочное
Основные буквенные значения

E fh - относительная деформация морозного пучения;

d fh - нормативная глубина промерзания грунта;

d w -глубина залегания подземных вод;

Z -минимальное расстояние между нормативной глубиной промерзания и глубиной залегания подземных вод;

W p -влажность на границе раскатывания;

W L - влажность на границе текучести;

J p - число пластичности;

W - расчетная предзимняя влажность;

R f - параметр вычисления относительной деформации морозного пучения грунта;

W cr - критическая влажность;

ρ w - плотность воды;

м 0 - абсолютное значение средней многолетней температуры воздуха за зимний период; W sat - полная влагоемкость грунта;

S r - степень влажности песков;

h fi - расчетный подъем нагруженного основания на уровне подошвы фундамента при пучении грунта под фундаментом;

h fp - расчетное значение подъема основания от пучения грунта под фундаментом;

e fp - расчетная относительная деформация пучения грунта под фундаментом;

S u - предельное значение подъема основания.

Предельное значение относительной деформации основания,

F d - расчетная несущая способность грунта основания;

У к - коэффициент надежности;

S OT - осадка фундамента после оттаивания;

ρ d - плотность грунта в сухом состоянии;

W п - средневзвешенное значение влажности грунта в слое d f п ;

Ω e - расчетное количество осадков, выпавших за летний период предшествующий моменту проведения изыскания;

Ω K - расчетное количество осадков, выпавших за предзимний период;

t ос - предзимний период;

t c - продолжительность периода;

К - коэффициент фильтрации;

V fi - расчетная средняя скорость пучения грунта;

P z - удельная нормальная сила пучения;

L fp - относительная деформация основания под фундаментом;

γ τ - коэффициент условий работы основания по боковой поверхности фундамента;

t - ширина пазух траншей (котлованов);

h f - величина подъема ненагруженной поверхности грунта;

d f - расчетная глубина промерзания грунта;

t d - продолжительность периода промерзания грунта под фундаментом;

t 0 - продолжительность зимнего периода;

α - эмпирический коэффициент;

1 - ширина подошвы фундамента;

т - коэффициент условий работы оснований под подошвой фундамента;

А - площадь подошвы фундамента;

Д л , Д ci , Ψ - эмпирические коэффициенты;

Р - давление под подошвой фундамента;

ρ - коэффициент учитывающий влияние толщины подушки на погруженное состояние подстилающего её пучинистого грунта;

К - показатель гибкости;

L - длина фундамента;

E j J j - изгибная жесткость;

G i A i - сдвиговая жесткость;

Е i - модуль упругости;

G i - модуль сдвига материала;

A i - площадь поперечного сечения конструктивного элемента;

M i - изгибающий момент;

F i - поперечная сила;

d i - расстояние oтj -ой связи до главной центральной оси поперечного сечения фундамента;

у о - расстояние от главной центральной оси поперечного сечения фундамента;

С - коэффициент жесткости основания при пучении грунта;

п - число столбчатых фундаментов;

γ - коэффициент условий работы фундамента;

m - число связей между панелями;

γ у - коэффициент условий работы;

F d б - расчетная несущая способность основания по боковой поверхности фундамента;

α - угол наклона боковой грани фундамента;

φ - угол внутреннего трения;

С - удельное сцепление;

d - глубина заложения фундамента;

V - относительное выпучивание ненагруженного фундамента;

N n - действующая на фундамент сила пучения;

d y - глубина зоны уплотнения.