Единая система защиты от коррозии и старения. Защита от коррозии. Способы защиты металлов. Защита оцинкованных поверхностей

Для защиты металлов от коррозии применяются различные способы, которые условно можно разделить на следующие основные направления: легирование металлов; защитные покрытия (металлические, неметаллические); электрохимическая защита; изменение свойств коррозионной среды; рациональное конструирование изделий.

Легирование металлов. Это эффективный метод повышения коррозионной стойкости металлов. При легировании в состав сплава или металла вводят легирующие элементы (хром, никель, молибден и др.), вызывающие пассивность металла. Пассивацией называют процесс перехода металла или сплава в состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Пассивное состояние металла объясняется образованием на его поверхности совершенной по структуре оксидной пленки (оксидная пленка обладает защитными свойствами при условии максимального сходства кристаллических решеток металла и образующегося оксида).

Широкое применение нашло легирование для защиты от газовой коррозии. Легированию подвергаются железо, алюминий, медь, магний, цинк, а также сплавы на их основе. В результате чего получаются сплавы с более высокой коррозионной стойкостью, чем сами металлы. Эти сплавы обладают одновременно жаростойкостью и жаропрочностью .

Жаростойкость – стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность – свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например, стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов, например Al 2 O 3 и Cr 2 O 3 .

Легирование также используется с целью снижения скорости электрохимической коррозии, особенно коррозии с выделением водорода. К коррозионностойким сплавам, например, относятся нержавеющие стали, в которых легирующими компонентами служат хром, никель и другие металлы.

Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий для защиты их коррозии, называются защитными покрытиями. Нанесение защитных покрытий – самый распространенный метод борьбы с коррозией. Защитные покрытия не только предохраняют изделия от коррозии, но и придают поверхностям ряд ценных физико-химических свойств (износостойкость, электрическую проводимость и др.). Они подразделяются на металлические и неметаллические. Общими требованиями для всех видов защитных покрытий являются высокая адгезионная способность, сплошность и стойкость в агрессивной среде.

Металлические покрытия. Металлические покрытия занимают особое положение, так как их действие имеет двойственный характер. До тех пор, пока целостность слоя покрытия не нарушена, его защитное действие сводится к изоляции поверхности защищаемого металла от окружающей среды. Это не отличается от действия любого механического защитного слоя (окраска, оксидная пленка и т.д.). Металлические покрытия должны быть непроницаемы для коррозионных агентов.

При повреждении покрытия (или наличии пор) образуется гальванический элемент. Характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов. Защитные антикоррозионные покрытия могут быть катодными и анодными . К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. Анодные покрытия имеют наиболее отрицательный потенциал, чем потенциал основного металла.

Так, например, по отношению к железу никелевое покрытие является катодным, а цинковое – анодным (рис. 2.).

При повреждении никелевого покрытия (рис. 2,а) на анодных участках происходит процесс окисления железа вследствие возникновения микрокоррозионных гальванических элементов. На катодных участках - восстановление водорода. Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждения покрытия.

Местное повреждение защитного цинкового слоя ведет к дальнейшему его разрушению, при этом поверхность железа защищена от коррозии. На анодных участках происходит процесс окисления цинка. На катодных участках - восстановление водорода (рис. 2,б).

Электродные потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия.

Для получения металлических защитных покрытий применяются различные способы: электрохимический (гальванические покрытия);погружение в расплавленный металл (горячее цинкование, лужение);металлизация (нанесение расплавленного металла на защищаемую поверхность с помощью струи сжатого воздуха);химический (получение металлических покрытий с помощью восстановителей, например гидразина).

Рис. 2. Коррозия железа в кислотном растворе с катодным (а) и анодным (б) покрытиями: 1 – основной металл; 2 – покрытие; 3 – раствор электролита.

Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.).

Неметаллические защитные покрытия. Они могут быть как неорганическими, так и органическими. Защитное действие этих покрытий сводится в основном к изоляции металла от окружающей среды.

В качестве неорганических покрытий применяют неорганические эмали, оксиды металлов, соединение хрома, фосфора и др. К органическим относятся лакокрасочные покрытия, покрытия смолами, пластмассами, полимерными пленками, резиной.

Неорганические эмали по своему составу являются силикатами, т.е. соединениями кремния. К основным недостаткам таких покрытий относятся хрупкость и растрескивание при тепловых и механических ударах.

Лакокрасочные покрытия наиболее распространены. Лакокрасочное покрытие должно быть сплошным, газо -и водонепроницаемым, химически стойким, эластичным, обладать высоким сцеплением с материалом, механической прочностью и твердостью.

Химические способы очень разнообразны. К ним относится, например, обработка поверхности металла веществами, вступающими с ним в химическую реакцию и образующими на его поверхности пленку устойчивого химического соединения, в формировании которой принимает участие сам защищаемый металл. К числу таких способов относится оксидирование , фосфатирование, сульфи-дирование и др.

Оксидирование - процесс образования оксидных пленок на поверхности металлических изделий.

Современный метод оксидирования – химическая и электрохимическая обработка деталей в щелочных растворах.

Для железа и его сплавов наиболее часто используется щелочное оксидирование в растворе, содержащем NaOH, NaNO 3 , NaNO 2 при температуре 135-140 О С. Оксидирование черных металлов называется воронением.

Fe
Fe 2+ + 2

На катодных участках происходит процесс восстановления:

2 Н 2 О + О 2 + 4
4ОН -

На поверхности металла в результате работы микрогальванических элементов образуется Fe(OH) 2 , который затем окисляется в Fe 3 O 4 . Оксидная пленка на малоуглеродистой стали имеет глубокий черный цвет, а на высокоуглеродистой стали – черный с сероватым оттенком.

Fe 2+ + 2OH -
Fe(OH) 2 ;

12 Fe(OH) 2 + NaNO 3
4Fe 3 O 4 + NaOH + 10 H 2 O + NH 3

Противокоррозионные свойства поверхностной пленки оксидов невысоки, поэтому область применения этого метода ограничена. Основное назначение – декоративная отделка. Воронение используется в том случае, когда необходимо сохранить исходные размеры, так как оксидная пленка составляет всего 1,0 – 1,5 микрона.

Фосфатирование - метод получения фосфатных пленок на изделиях из цветных и черных металлов. Для фосфатирования металлическое изделие погружают в растворы фосфорной кислоты и ее кислых солей (H 3 PO 4 + Mn(H 2 PO 4) 2) при температуре 96-98 о С.

На поверхности металла в результате работы микрогальванических элементов образуется фосфатная пленка, которая имеют сложный химический состав и содержит малорастворимые гидраты двух- и трех замещенных фосфатов марганца и железа: MnHPO 4 , Mn 3 (PO 4) 2 , FeHPO 4 ,Fe 3 (PO 4) 2 n H 2 O.

На анодных участках происходит процесс окисления:

Fe
Fe 2+ + 2

На катодных участках происходит процесс восстановления водорода:

2Н + + 2
Н 2 (рН < 7)

При взаимодействии ионов Fe 2+ с анионами ортофосфорной кислоты и ее кислых солей образуются фосфатные пленки:

Fe 2+ + H 2 PO - 4
FeHPO 4 + H +

3Fe 2+ + 2 PO 4 3-
Fe 3 (PO 4) 2

Образующаяся фосфатная пленка химически связана с металлом и состоит из сросшихся между собой кристаллов, разделенных порами ультрамикроскопических размеров. Фосфатные пленки обладают хорошей адгезией, имеют развитую шероховатую поверхность. Они являются хорошим грунтом для нанесения лакокрасочных покрытий и пропитывающих смазок. Фосфатные покрытия применяются в основном для защиты металлов от коррозии в закрытых помещениях, а также как метод подготовки поверхности к последующей окраске или покрытию лаком. Недостатком фосфатных пленок является низкая прочность и эластичность, высокая хрупкость.

Анодирование – это процесс образования оксидных пленок на поверхности металла и прежде всего алюминия. В обычных условиях на поверхности алюминия присутствует тонкая оксидная пленка оксидов Al 2 O 3 или Al 2 O 3 ∙ nH 2 O, которая не может защитить его от коррозии. Под воздействием окружающей среды алюминий покрывается слоем продуктов коррозии. Процесс искусственного образования оксидных пленок может быть осуществлен химическим и электрохимическим способами. При электрохимическом оксидировании алюминия алюминиевое изделие играет роль анода электролизера. Электролитом служит раствор серной, ортофосфорной, хромовой, борной или щавелевой кислот, катодом может быть металл, не взаимодействующий с раствором электролита, например нержавеющая сталь. На катоде выделяется водород, на аноде происходит образование оксида алюминия. Суммарный процесс на аноде можно представить следующим уравнением:

2 Al + 3 H 2 O
Al 2 O 3 + 6 H + + 6

    Эти методы можно разделить на 2 группы. Первые 2 метода обычно реализуются до начала производственной эксплуатации металлоизделия (выбор конструкционных материалов и их сочетаний еще на стадии проектирования и изготовления изделия, нанесение на него защитных покрытий). Последние 2 метода, напротив, могут быть осуществлены только в ходе эксплуатации металлоизделия (пропускание тока для достижения защитного потенциала, введение в технологическую среду специальных добавок-ингибиторов) и не связаны с какой-либо предварительной обработкой до начала использования.

    Вторая группа методов позволяет при необходимости создавать новые режимы защиты, обеспечивающие наименьшую коррозию изделия. Например, на отдельных участках трубопровода в зависимости от агрессивности почвы можно менять плотность катодного тока. Или для разных сортов нефти, прокачиваемой через трубы, использовать разные ингибиторы.

    Вопрос: Как применяются ингибиторы коррозии?

    Ответ: Для борьбы с коррозией металлов широко распространены ингибиторы коррозии, которые в небольших количествах вводятся в агрессивную среду и создают на поверхности металла адсорбционную пленку, тормозящую электродные процессы и изменяющую электрохимические параметры металлов.

    Вопрос: Каковы способы защиты металлов от коррозии с применением лакокрасочных материалов?

    Ответ: В зависимости от состава пигментов и пленкообразующей основы лакокрасочные покрытия могут выполнять функции барьера, пассиватора или протектора.

    Барьерная защита – это механическая изоляция поверхности. Нарушение целостности покрытия даже на уровне появления микротрещин предопределяет проникновение агрессивной среды к основанию и возникновение подпленочной коррозии.

    Пассивация поверхности металла с помощью ЛКП достигается при химическом взаимодействии металла и компонентов покрытия. К этой группе относят грунты и эмали, содержащие фосфорную кислоту (фосфатирующие), а также составы с ингибирующими пигментами, замедляющими или предотвращающими процесс коррозии.

    Протекторная защита металла достигается добавлением в материал покрытия порошковых металлов, создающих с защищаемым металлом донорские электронные пары. Для стали таковыми являются цинк, магний, алюминий. Под действием агрессивной среды происходит постепенное растворение порошка добавки, а основной материал коррозии не подвергается.

    Вопрос: Чем определяется долговечность защиты металла от коррозии лакокрасочными материалами?

    Ответ: Во-первых, долговечность защиты металла от коррозии зависит от типа (и вида) применяемого лакокрасочного покрытия. Во-вторых, определяющую роль играет тщательность подготовки поверхности металла под покраску. Наиболее трудоемким процессом при этом является удаление продуктов коррозии, образовавшихся ранее. Наносят специальные составы, разрушающие ржавчину, с последующим их механическим удалением металлическими щетками.

    В некоторых случаях удаление ржавчины практически невозможно осуществить, что предполагает широкое применение материалов, которые можно наносить непосредственно на поверхности, поврежденные коррозией – ЛКМ по ржавчине. К этой группе относят некоторые специальные грунты и эмали, используемые в многослойных или самостоятельных покрытиях.

    Вопрос: Что такое высоконаполненные двухкомпонентные системы?

    Ответ: Это – антикоррозийные лакокрасочные материалы с уменьшенным содержанием растворителя (процентное содержание летучих органических веществ в них не превышает 35%). На рынке материалов для домашнего применения в основном предлагаются однокомпонентные материалы. Главное преимущество высоконаполненных систем по сравнению с обычными – значительно лучшая коррозионная стойкость при сопоставимой толщине слоя, меньший расход материала и возможность нанесения более толстым слоем, что обеспечивает получение необходимой антикоррозионной защиты всего за 1-2 раза.

    Вопрос: Как предохранить от разрушения поверхность гальванизированной стали?

    Ответ: Антикоррозионная грунтовка на основе модифицированных винилакриловых смол на растворителе «Гальвапласт» применяется для внутренних и наружных работ на основаниях из черных металлов со снятой окалиной, гальванизированной стали, оцинкованного железа. Растворитель – уайт-спирит. Нанесение – кистью, валиком, распылением. Расход 0,10-0,12 кг/кв.м; высыхание 24 часа.

    Вопрос: Что собой представляет патина?

    Ответ: Слово «патина» обозначает пленку различных оттенков, образующуюся на поверхности меди и медьсодержащих сплавов под воздействием атмосферных факторов при естественном или искусственном старении. Иногда патиной называют оксиды на поверхности металлов, а также пленки, вызывающие со временем потускнение на поверхности камней, мрамора или деревянных предметов.

    Появление патины не является признаком коррозии, скорее всего это естественный защитный слой на медной поверхности.

    Вопрос: Можно ли искусственно создать патину на поверхности медных изделий?

    Ответ: В естественных условиях зеленая патина образуется на поверхности меди в течение 5-25 лет, в зависимости от климата и химического состава атмосферы и осадков. При этом из меди и двух ее основных сплавов – бронзы и латуни – образуются карбонаты меди: ярко-зеленый малахит Сu 2 (СО 3)(ОН) 2 и лазурно-голубой азурит Сu 2 (СО 3) 2 (ОН) 2 . Для цинксодержащей латуни возможно образование зелено-синего розазита состава (Cu,Zn) 2 (CO 3)(OH) 2 . Основные карбонаты меди можно легко синтезировать и в домашних условиях, приливая водный раствор кальцинированной соды к водному раствору соли меди, например медного купороса. При этом в начале процесса, когда в избытке находится соль меди, образуется продукт, более близкий по составу к азуриту, а в конце процесса (при избытке соды) – к малахиту.

    Сберегающее окрашивание

    Вопрос: Как защитить металлические или железобетонные конструкции от влияния агрессивной среды – солей, кислот, щелочей, растворителей?

    Ответ: Для создания химстойких покрытий существует несколько защитных материалов, у каждого из которых своя область защиты. Наиболее широкий спектр защиты имеют: эмали ХC-759, «ЭЛОКОР СБ-022» лак , ФЛК-2, грунтовки , ХС-010 и др. В каждом отдельном случае подбирается конкретная схема окраски, согласно условиям эксплуатации. Краски тиккурилла Коутингс Темабонд, Темакоут и Темахлор.

    Вопрос: Какие составы могут применяться при окраске внутренних поверхностей цистерн для керосина и других нефтепродуктов?

    Ответ: Темалайн ЛП – двухкомпонентная эпоксидная глянцевая краска с отвердителем на основе аминоаддукта. Нанесение – кистью, распылением. Высыхание 7 час.

    ЭП-0215 – грунт для защиты от коррозии внутренней поверхности кессон-баков, работающих в среде топлива с примесью воды. Наносится на поверхности из стали, магниевых, алюминиевых и титановых сплавов, эксплуатируемых в условиях различных климатических зон, при повышенных температурах и воздействии загрязненной среды.

    Пригодны для применения грунтовки БЭП-0261 и эмали БЭП-610.

    Вопрос: Какие составы могут применяться для защитного покрытия металлических поверхностей в морской и промышленной среде?

    Ответ: Краска толстопленочного типа на хлоркаучуковой основе применяется для окраски металлических поверхностей в морской и промышленной среде, подвергающихся умеренному химическому воздействию: мосты, краны, конвейеры, портовое оборудование, наружность цистерн.

    Темакоут ХБ – двухкомпонентная модифицированная эпоксидная краска применяется для грунтовки и окраски металлических поверхностей, подвергающихся атмосферному, механическому и химическому воздействию. Нанесение – кистью, распылением. Высыхание 4 часа.

    Вопрос: Какие составы следует применять для покрытия сложноочищаемых металлических поверхностей, в том числе погруженных в воду?

    Ответ: Темабонд СТ-200 – двухкомпонентная модифицированная эпоксидная краска с алюминиевым пигментированием и низким содержанием растворителей. Применяется для окраски мостов, цистерн, стальных конструкций и оборудования. Нанесение – кистью, распылением. Высыхание – 6 час.

    Темалайн БЛ – двухкомпонентное эпоксидное покрытие, не содержащее растворителей. Применяется для окраски стальных поверхностей, подвергающихся износу, химическому и механическому воздействию при погружении в воду, контейнеров для нефти или бензина, цистерн и резервуаров, очистных сооружений для сточных вод. Нанесение – безвоздушным распылением.

    Темацинк – однокомпонентная цинконасыщенная эпоксидная краска с отвердителем на основе полиамида. Используется в качестве грунтовки в эпоксидных, полиуретановых, акриловых, хлоркаучуковых системах окраски для стальных и чугунных поверхностей, подвергающихся сильным атмосферным и химическим воздействиям. Применяется для окраски мостов, кранов, стальных каркасов, стальных конструкций и оборудования. Высыхание 1 час.

    Вопрос: Как уберечь подземные трубы от образования свищей?

    Ответ: Причин прорыва любых труб может быть две: механические повреждения или действие коррозии. Если первая причина – результат случайности и безалаберности – трубу чем-то зацепили или разошелся сварной шов, то коррозии избежать никак нельзя, это закономерное явление, вызванное влажностью почвы.

    Кроме использования специальных покрытий, существует широко применяемая во всем мире защита – катодная поляризация. Она представляет собой источник постоянного тока, обеспечивающий полярный потенциал min 0,85 В, max – 1,1 В. Состоит всего лишь из обычного трансформатора переменного напряжения и диодного выпрямителя.

    Вопрос: Сколько стоит катодная поляризация?

    Ответ: Стоимость приборов катодной защиты в зависимости от их конструкции составляет от 1000 до 14 тысяч рублей. Бригада ремонтников легко может проверять поляризационный потенциал. Установка защиты – тоже не составляет больших затрат и не сопряжена с трудоемкими земляными работами.

    Защита оцинкованных поверхностей

    Вопрос: Почему оцинкованные металлы нельзя подвергать дробеструйной обработке?

    Ответ: Такая подготовка нарушает естественную коррозионную стойкость металла. Поверхности такого рода обрабатывают с помощью специального абразивного агента – круглых частиц стекла, не разрушающих защитный слой цинка на поверхности. В большинстве случаев достаточно бывает просто обработать раствором аммиака для удаления с поверхности жирных пятен и продуктов коррозии цинка.

    Вопрос: Чем восстановить поврежденное цинковое покрытие?

    Ответ: Цинкнаполненными композициями ЦинкКОС, ЦНК, «Виникор-цинк» и др., которые наносятся методом холодного цинкования и обеспечивают анодную защиту металла.

    Вопрос: Как производится защита металла с применением ЦНК (цинкнаполненных композиций)?

    Ответ: Технология холодного цинкования с применением ЦНК гарантирует абсолютную нетоксичность, пожаробезопасность, термостойкость до +800°С. Покрытие металла данным составом производится методом распыления, валиком или даже просто кистью и обеспечивает изделию, по сути, двойную защиту: и катодную, и пленочную. Срок действия такой защиты составляет 25-50 лет.

    Вопрос: В чем основные преимущества метода «холодного цинкования» перед горячим цинкованием?

    Ответ: У данного метода есть следующие преимущества:

    1. Ремонтопригодность.
    2. Возможность нанесения в условиях строительной площадки.
    3. Нет ограничений по габаритным размерам защищаемых конструкций.

    Вопрос: При какой температуре происходит нанесение термодиффузионного покрытия?

    Ответ: Нанесение термодиффузионного цинкового покрытия проводится при температурах от 400 до 500°С.

    Вопрос: Есть ли отличия коррозионной стойкости покрытия, полученного методом термодиффузионного цинкования, по сравнению с другими видами цинковых покрытий?

    Ответ: Коррозионная стойкость термодиффузионного цинкового покрытия в 3-5 раз выше гальванического и в 1,5-2 раза превышает коррозионную стойкость горячего цинкового покрытия.

    Вопрос: Какие лакокрасочные материалы можно использовать для защитно-декоративной окраски оцинкованного железа?

    Ответ: Для этого можно использовать как водоразбавляемые – грунт Г-3, краска Г-4, так и органоразбавляемые – ЭП-140, «ЭЛОКОР СБ-022» и др. Могут использоваться защитные системы Тиккурила Коутингс: 1 Темакоут ГПЛС-Праймер+Темадур, 2 Темапрайм ЕЕ+Темалак, Темалак и Темадур колеруется по RAL и TVT.

    Вопрос: Какой краской могут окрашиваться водосточные и дренажные оцинкованные трубы?

    Ответ: Sockelfarg – латексная краска черного и белого цвета на водной основе. Предназначена для нанесения как на новые, так и на ранее окрашенные поверхности на открытом воздухе. Устойчива к воздействию атмосферных явлений. Растворитель – вода. Высыхание 3 часа.

    Вопрос: Почему средства антикоррозийной защиты на водной основе применяются редко?

    Ответ: Существуют 2 основные причины: повышенная по сравнению с обычными материалами цена и бытующее в определенных кругах мнение, что водные системы обладают худшими защитными свойствами. Однако по мере ужесточения экологического законодательства, как в Европе, так и во всем мире, популярность водных систем растет. Специалисты же, испытавшие качественные материалы на водной основе, смогли убедиться, что их защитные свойства не хуже, чем у традиционных материалов, содержащих растворители.

    Вопрос: Какой прибор используется для определения толщины лакокрасочной пленки на металлических поверхностях?

    Ответ: Наиболее прост в употреблении прибор «Константа МК» – он измеряет толщину ЛКП на ферромагнитных металлах. Значительно больше функций выполняет многофункциональный толщиномер «Константа К-5», который измеряет толщину обычных ЛКП, гальванических и горячецинковых покрытий как на ферромагнитных, так и на неферромагнитных металлах (алюминий, его сплавы и др.), а также измеряет шероховатость поверхности, температуру и влажность воздуха и т.п.

    Ржавчина отступает

    Вопрос: Чем можно обработать предметы, сильно изъеденные ржавчиной?

    Ответ: Первый рецепт: смесью 50 г молочной кислоты и 100 мл вазелинового масла. Кислота превращает метагидроксид железа из ржавчины в растворимую в вазелиновом масле соль – лактат железа. Очищенную поверхность протирают тряпочкой, смоченной вазелиновым маслом.

    Второй рецепт: раствором 5 г хлорида цинка и 0,5 г гидротартрата калия, растворенного в 100 мл воды. Хлорид цинка в водном растворе подвергается гидролизу и создает кислую среду. Метагидроксид железа растворяется за счет образования в кислой среде растворимых комплексов железа с тартрат-ионами.

    Вопрос: Как открутить заржавевшую гайку подручными средствами?

    Ответ: Заржавевшую гайку можно смочить керосином, скипидаром или олеиновой кислотой. Через некоторое время ее удается отвернуть. Если гайка «упорствует», можно поджечь керосин или скипидар, которым ее смачивали. Обычно этого достаточно для разъединения гайки и болта. Самый радикальный способ: к гайке прикладывают сильно нагретый паяльник. Металл гайки расширяется, и ржавчина отстает от резьбы; теперь в зазор между болтом и гайкой можно влить несколько капель керосина, скипидара или олеиновой кислоты. На этот раз гайка уж точно отвернется!

    Есть и другой способ разъединения ржавых гаек и болтов. Вокруг заржавевшей гайки делают «чашечку» из воска или пластилина, бортик которой выше уровня гайки на 3-4 мм. В нее заливают разбавленную серную кислоту и кладут кусочек цинка. Через сутки гайка легко отвернется ключом. Дело в том, что чашечка с кислотой и металлическим цинком на железном основании – это миниатюрный гальванический элемент. Кислота растворяет ржавчину, и образовавшиеся катионы железа восстанавливаются на поверхности цинка. А металл гайки и болта не растворяется в кислоте до тех пор, пока у нее есть контакт с цинком, поскольку цинк более активный в химическом отношении металл, чем железо.

    Вопрос: Какие составы, наносимые по ржавчине, выпускает наша промышленность?

    Ответ: К отечественным органоразбавляемым составам, наносимым «по ржавчине», относятся известные материалы: грунт (некоторые производители выпускают его под названием «Инкор») и грунт-эмаль «Грэмируст». Эти эпоксидные двухкомпонентные краски (основа + отвердитель) содержат ингибиторы коррозии и целевые добавки, позволяющие наносить их на плотную ржавчину толщиной до 100 мкм. Достоинства этих грунтовок: отвердение при комнатной температуре, возможность нанесения на частично прокорродированную поверхность, высокая адгезия, хорошие физико-механические свойства и химическая стойкость, обеспечивающие длительную эксплуатацию покрытия.

    Вопрос: Чем можно окрашивать старый ржавый металл?

    Ответ: По плотнодержащейся ржавчине возможно применение нескольких лакокрасочных материалов, содержащих преобразователи ржавчины:

  • грунтовка Г-1, грунт-краска Г-2 (водоразбавляемые материалы) – при температурах до +5°;
  • грунт-эмаль ХВ-0278, грунт-эмаль АС-0332 – до минус 5°;
  • грунт-эмаль «ЭЛОКОР СБ-022» (материалы на органических растворителях) – до минус 15°С.
  • Грунт-эмаль Тиккурила Коутингс, Темабонд (колеруется по RAL иTVT)

Вопрос: Как остановить процесс ржавления металла?

Ответ: Это можно сделать с помощью «нержамет-грунта». Грунт может использоваться как в качестве самостоятельного покрытия по стали, чугуну, алюминию, так и в системе покрытий, включающей 1 слой грунтовки и 2 слоя эмали. Препарат также применяется для грунтования прокорродировавших поверхностей.

«Нержамет-грунт» работает на поверхности металла как преобразователь ржавчины, связывая ее химически, а образующаяся полимерная пленка надежно изолирует поверхность металла от атмосферной влаги. При применении состава полные затраты на ремонтно-восстановительные работы по перекраске металлоконструкций снижаются в 3-5 раз. Грунт выпускается готовым к применению. При необходимости его надо разбавить до рабочей вязкости уайт-спиритом. Препарат наносится на металлические поверхности с остатками плотно держащейся ржавчины и окалины кистью, валиком, краскопультом. Время высыхания при температуре +20° - 24 часа.

Вопрос: Часто кровельное покрытие выцветает. Какую краску можно использовать для окраски оцинкованных крыш и водостоков?

Ответ: Нержамет-цикрон. Покрытие обеспечивает длительную защиту от атмосферных воздействий, влажности, ультрафиолетового излучения, дождя, снега и т.д.

Обладает высокой укрывистостью и светостойкостью, не выцветает. Значительно продлевает срок службы оцинкованных крыш. Также покрытия Тиккурила Коутингс, Темадур и Темалак.

Вопрос: Могут ли хлоркаучуковые краски предохранить металл от ржавчины?

Ответ: Эти краски приготовлены из хлорированного каучука, диспергированного в органических растворителях. По своему составу относятся к летуче-смоляным и обладают высокой водо– и химической стойкостью. Поэтому возможно применять их для защиты от коррозии металлических и бетонных поверхностей, водопроводных труб и резервуаров.Из материалов Тиккурил Коутингс можно использовать систему Теманил МС-Праймер+ Темахлор.

Антикор в бане, ванной, бассейне

Вопрос: Каким покрытием можно защитить от коррозии банные емкости для холодной питьевой и горячей мытьевой воды?

Ответ: Для емкостей под холодную питьевую и мытьевую воду рекомендуется краска КО-42;,Эповин п од горячую воду – композиции ЦинкКОС и «Теплокор ПИГМА».

Вопрос: Что представляют собой эмалированные трубы?

Ответ: По химической стойкости они не уступают медным, титановым и свинцовым, а по себестоимости в несколько раз дешевле. Применение эмалированных труб из углеродистых сталей вместо нержавеющих дает десятикратную экономию средств. К числу достоинств такой продукции относится большая механическая прочность, в том числе в сравнении с другими видами покрытий – эпоксидными, полиэтиленовыми, пластмассовыми, а также более высокая стойкость против истирания, благодаря чему появляется возможность уменьшить диаметр труб без снижения их пропускной способности.

Вопрос: В чем особенности повторной эмалировки ванн?

Ответ: Эмалировку можно осуществлять кистью или распылением с участием профессионалов, а также кистью самостоятельно. Предварительная подготовка поверхности ванны заключается в удалении старой эмали и зачистке ржавчины. Весь процесс занимает не более 4-7 часов, еще 48 часов ванна сохнет, а пользоваться ею можно через 5-7 суток.

Ванны повторной эмалировки требуютспециального ухода. Такие ванны нельзя мыть порошками типа «Комет» и «Пемолюкс», или применяя средства, содержащие кислоту, такие, как «Силит». Недопустимо попадание на поверхность ванны лаков, в том числе и для волос, использование отбеливателя при стирке. Такие ванны, как правило, чистят мыльными средствами: стиральными порошками или средствами для мытья посуды, нанесенными на губку или мягкую тряпку.

Вопрос: Какими ЛКМ можно выполнить повторную эмалировку ванн?

Ответ: Композиция «Светлана» включает в себя эмаль, щавелевую кислоту, отвердитель, колеровочные пасты. Ванну промывают водой, протравливают щавелевой кислотой (удаляют пятна, камень, загрязнения, ржавчину и создают шероховатую поверхность). Промывают стиральным порошком. Сколы заделывают заранее. Затем в течение 25-30 минут следует нанести эмаль. При работе с эмалью и отвердителем не допускается контакт с водой. Растворитель – ацетон. Расход на ванну – 0,6 кг; высыхание – 24 часа. Полностью набирает свойства через 7 суток.

Также можно применить краску двухкомпонентную на эпоксидной основе Tikkurila «Реафлекс-50». При использовании эмали для ванн глянцевой (белая, колерующаяся) для очистки используют либо стиральные порошки, либо хозяйственное мыло. Полностью набирает свойства через 5 суток. Расход на ванну – 0,6 кг. Растворитель – технический спирт.

Б-ЭП-5297В применяют для реставрации эмалевого покрытия ванн. Это краска глянцевая, белая, возможна колеровка. Покрытие гладкое, ровное, прочное. Не следует применять для чистки абразивные порошки типа «Санитарный». Полностью набирает свойства через 7 суток. Растворители – смесь спирта с ацетоном; Р-4, №646.

Вопрос: Как обеспечить защиту от обрыва стальной арматуры в чаше плавательного бассейна?

Ответ: При неудовлетворительном состоянии кольцевого дренажа бассейна возможно размягчение и суффозия грунта. Проникновение воды под днище резервуара способно вызвать просадку грунта и образование трещин в бетонных конструкциях. В этих случаях арматура в трещинах может коррозировать до обрыва.

В таких сложных случаях реконструкция поврежденных железобетонных конструкций резервуара должна включать в себя выполнение защитного жертвенного слоя из торкрет-бетона на поверхностях железобетонных конструкций, подвергающихся выщелачивающему действию воды.

Препятствия для биоразрушений

Вопрос: Какие внешние условия определяют развитие дереворазрушающих грибов?

Ответ: Наиболее благоприятными условиями для развития дереворазрушающих грибов считаются: наличие питательных веществ воздуха, достаточная влажность древесины и благоприятная температура. Отсутствие какого-либо из этих условий будет задерживать развитие гриба, даже если он прочно укрепится в древесине. Большинство грибов хорошо развивается только при высокой относительной влажности воздуха (80-95%). При влажности древесины ниже 18% развитие грибов практически не происходит.

Вопрос: Каковы основные источники увлажнения древесины и в чем их опасность?

Ответ: К основным источникам увлажнения древесины в конструкциях различных зданий и сооружений следует отнести грунтовые (подземные) и поверхностные (ливневые и сезонные) воды. Они особенно опасны для деревянных элементов открытых сооружений, находящихся в грунте (столбов, свай, опор ЛЭП и связи, шпал и т.п.). Атмосферная влага в виде дождя и снега угрожает наземной части открытых сооружений, а также наружным деревянным элементам зданий. Эксплуатационная влага в капельно-жидком или парообразном виде в жилых помещениях присутствует в виде бытовой влаги, выделяемой при приготовлении пищи, стирке, сушке белья, мытье полов и т.д.

Большое количество влаги вносится в здание при укладке сырой древесины, применении кладочных растворов, бетонировании и др. Например, 1 кв.м уложенной древесины с влажностью до 23% при высыхании до 10-12% выделяет до 10 л воды.

Древесина зданий, просыхающая естественным путем, в течение длительного времени находится под угрозой загнивания. Если не были предусмотрены химические меры защиты, она, как правило, поражается домовым грибом в такой степени, что конструкции приходят в полную негодность.

Конденсационная влага, возникающая на поверхности или в толще конструкций, опасна потому, что она обнаруживается, как правило, уже тогда, когда в ограждающей деревянной конструкции или ее элементе произошли необратимые изменения, например, внутреннее загнивание.

Вопрос: Кто является «биологическими» врагами дерева?

Ответ: Это плесень, водоросли, бактерии, грибки и антимицеты (это нечто среднее между грибками и водорослями). Почти со всеми из них можно бороться с помощью антисептиков. Исключение составляют грибки (сапрофиты), так как антисептики действуют лишь на некоторые их виды. А ведь именно грибки – причина так широко распространенной гнили, с которой справиться сложнее всего. Профессионалы подразделяют гнили по цветам (красная, белая, серая, желтая, зеленая и коричневая). Красная гниль поражает хвойные породы дерева, белая и желтая – дуб и березу, зеленая – дубовые бочки, а также деревянные балки и перекрытия погребов.

Вопрос: Существуют ли способы нейтрализации белого домового гриба?

Ответ: Белый домовой гриб является наиболее опасным врагом деревянных сооружений. Скорость разрушения древесины белым домовым грибом такова, что за 1 месяц он полностью «съедает» четырехсантиметровый дубовый пол. Раньше в деревнях, если избу поражал этот гриб, ее немедленно сжигали, чтобы спасти от заражения все прочие строения. После чего пострадавшей семье на другом месте всем миром строили новую избу. В настоящее время, чтобы избавиться от белого домового гриба, разбирают и сжигают пораженный участок, а остальную часть пропитывают 5%-ным хромпиком (5%-ный раствор бихромата калия в 5%-ной серной кислоте), при этом рекомендуется обработать и землю на 0,5 м глубины.

Вопрос: Каковы способы защиты дерева от гниения на ранних стадиях этого процесса?

Ответ: Если процесс гниения уже начался, его можно остановить только тщательной просушкой и вентиляцией деревянных конструкций. На ранних стадиях могут помочь дезинфицирующие растворы, например, такие, как антисептические составы «Древесный лекарь». Они выпускаются в трех различных модификациях.

Марка 1 предназначена для профилактики деревянных материалов сразу после их покупки или сразу после постройки дома. Состав защищает от грибка и жука-древоточца.

Марка 2 используется, если на стенах дома уже появились грибок, плесень или «синева». Этот состав уничтожает уже имеющиеся болезни и защищает от их будущих проявлений.

Марка 3 – самый мощный антисептик, он полностью останавливает процесс гниения. Совсем недавно был разработан специальный состав (марка 4) для борьбы с насекомыми – «антижук».

SADOLIN Bio Clean – это дезинфицирующее средство для зараженных плесенью, мхом, водорослями поверхностей, созданное на основе гипохлорита натрия.

DULUX WEATHERSHIELD FUNGICIDAL WASH – высокоэффективный нейтрализатор плесени, лишайников и гнили. Эти составы применяются как внутри, так и снаружи помещения, но эффективны они лишь на ранних стадиях борьбы с гнилью. При серьезных поражениях деревянных конструкций можно остановить гниение специальными методами, но это достаточно сложная работа, выполняемая, как правило, профессионалами с помощью реставрационных химических составов.

Вопрос: Какие защитные пропитки и консервационные составы, представленные на отечественном рынке, препятствуют биокоррозии?

Ответ: Из российских антисептических препаратов необходимо упомянуть метацид (100%-ный сухой антисептик) или полисепт (25%-ный раствор того же вещества). Хорошо себя зарекомендовали такие консервационные составы, как «БИОСЕПТ», «КСД» и «КСДА». Они предохраняют древесину от поражения плесенью, грибками, бактериями, а последние два, кроме того, делают древесину трудновоспламеняемой. Текстурные покрытия «АКВАТЕКС», «СОТЕКС» и «БИОКС» избавляют от возникновения грибка, плесени и древесной синевы. Они воздухопроницаемы и имеют стойкость свыше 5 лет.

Хорошим отечественным материалом для защиты дерева является лессирующая пропитка ГЛИМС-ЛecSil. Это готовая к применению водная дисперсия на основе стирол-акрилатного латекса и реакционно-способного силана с модифицирующими добавками. При этом состав не содержит органических растворителей и пластификаторов. Лессировка резко снижает водопоглощение дерева, в результате чего его можно даже мыть, в том числе и водой с мылом, предохраняет от вымывания противопожарной пропитки, благодаря антисептическим свойствам уничтожает грибки и плесень и предупреждает их дальнейшее образование.

Из импортных антисептических составов для защиты дерева хорошо зарекомендовали себя антисептики фирмы TIKKURILA. Pinjasol Color – антисептик, образующий сплошную водоотталкивающую и атмосферостойкую.

Вопрос: Что такое инсектициды и как их применяют?

Ответ: Для борьбы с жуками и их личинками применяют ядовитые химические вещества – инсектициды контактные и кишечные. Фтористый и кремнефтористый натрий разрешены Минздравом и применяются с начала прошлого века; при их применении обязательно соблюдение мер безопасности. Для предотвращения поражения древесины жучком применяется профилактическая обработка кремнефтористыми соединениями или 7-10%-ным раствором поваренной соли. В исторические периоды повсеместного деревянного строительства вся древесина обрабатывалась на этапе заготовки. В защитный раствор добавляли анилиновые красители, что изменяло цвет древесины. В старых домах и по сей день можно встретить балки красного цвета.

Материал подготовили Л.РУДНИЦКИЙ, А.ЖУКОВ, Е.АБИШЕВ

Система защита от коррозии: как и зачем?

Недостаток такого материала, как металл в том, что на нем может возникать коррозия. На сегодняшний день существует несколько способов, их нужно использовать в комплексе. Система защиты от коррозии поможет избавиться от ржавчины и предотвратит образования пластов.

Обработка металлической поверхности специальным покрытием – действенный способ. Металлическое покрытие повышает твердость и прочность материала, улучшает механические свойства. Нужно учитывать, что в данном случае потребуется дополнительная защита. Неметаллическое покрытие наносится на керамику, каучук, пластмассу, древесину.

Способы защиты от коррозии

Чаще всего используют пленкообразовательные покрытия, они устойчивы к воздействию внешней среды. На поверхности образуется пленка, которая тормозит процессы коррозии.

Для того чтобы снизить коррозийную активность, необходимо нейтрализовать среду, подверженную ее влиянию. В этом вам помогут ингибиторы, они вводятся в агрессивную среду, и образуется пленка, которая тормозит процессы и изменяет химические параметры металла.

Широко используется легирование, оно повышает свойства, которые помогают повысить устойчивость материала к коррозийным процессам. Сталь легированная содержит в своем составе много хрома, он образует пленки, которые и защищают металл.

Не лишним будет использование защитных пленок. Анодные покрытия применяются для цинка и хрома, катодные – олова, никеля, меди. Их наносят с помощью горячего метода, также может использоваться гальванизация. Изделие нужно поместить в емкость, в которой находится защитный металл в расплавленном состоянии.

Используя металлизацию, можно избежать появления коррозии. Поверхность покрывается металлом, находящемся в расплавленном состоянии, его распыляют воздухом. Преимущество такого метода в том, что покрывать им можно готовые и полностью собранные конструкции. Минус в том, что поверхность будет немного шероховатой. Такие покрытия наносятся при помощи диффузии в тот металл, который является основным.

Покрытие можно защитить оксидной пленкой, эта процедура называется оксидированием. Оксидная пленка, которая есть на металле, обрабатывается мощным окислителем, в результате чего она становится в несколько раз прочнее.

В промышленности также используется фосфатирование. Соли железа погружаются в горячий раствор фосфатов, в конечном итоге образуется поверхностная пленка.

Для временной защиты поверхности необходимо использовать этиноль, вазелин технический, ингибиторы. Последние замедляют реакцию, к результате чего коррозия развивается гораздо медленнее.

Используемые в настоящее время для защиты от коррозии лакокрасочные и гальванические покрытия обладают существенными недостатками. Что касается лакокрасочных покрытий, то, в первую очередь, это низкая степень надежности при механических повреждениях, низкий ресурс однослойных покрытий и высокая стоимость многослойных покрытий. Повреждение покрытия до защищаемого металла приводит к развитию подплёночной коррозии. В этом случае агрессивная среда попадает под изолирующий слой лакокрасочного покрытия, начинается коррозия основного металла, которая активно распространяется под слоем краски, что приводит к отслоению защитного слоя.

Что касается гальваники, то при достижении необходимых свойств, электролит, чувствителен к колебаниям температуры в течение всего процесса нанесения, который обычно длится несколько часов. Также при нанесении гальванических покрытий приходится использовать материалы и химикаты, многие из которых являются весьма вредными. Конкуренцию лакокрасочным, гальваническим, а также стеклоэмалевым, битумным, битумно-резиновым, полимерным и эпоксидным покрытиям и электрохимической защите составляют металлизационно-лакокрасочные покрытия Спрамет™ .

Спрамет™ — набор комбинированных металлизационно-лакокрасочных покрытий для защиты от коррозии на срок до 50 лет, каждое из которых обладает дополнительными свойствами — жаростойкостью, огнезащитными характеристиками, теплоизолирующими характеристиками и пр.

Системы Спрамет™ наносятся как в производственных условиях, так и в ремонтных — на месте эксплуатации объекта. Высокая стойкость Спрамет к механическим повреждениям, отсутствие подпленочной коррозии и цены сравнимые с качественной окраской делают эту систему идеальным выбором для долгосрочной защиты от коррозии особенно опасных и уникальных объектов.

Под воздействием основных эксплуатационных факторов старения (времени, совместно температуры и влаги, агрессивных сред, разницы электрохимических потенциалов) система защиты Спрамет не изменяет своих первоначальных свойств, выдерживает нагрев до 650°С, обладает высокими механическими характеристиками: износостойкостью, гибкостью, а также активно противостоит коррозии. Спрамет эффективно защищает сварные швы и в течение всего периода эксплуатации сохраняет защитные и декоративные свойства.

В совокупности затраты на эксплуатацию изделий, защищенных с помощью систем Спрамет в 2-4 раза меньше по сравнению с лакокрасочными или иными известными на сегодняшний день покрытиями.

ЗАО «Плакарт» провело широкомасштабные испытания и начало применение композиций Спрамет™ — протекторных систем защиты от коррозии на базе металлических матриц. Эти композиции состоят из одного или более слоев. Основа композиции — металлическая матрица: напыленный алюминий, цинк или их сплавы. Для улучшения эксплуатационных свойств наносится пропитывающий слой, закрывающий поры, затем — защитный или теплоизолирующий, а также колеровочный слои.

В ЗАО «Плакарт» разработана линейка композиций для решения задач различных условий эксплуатации:

  • Спрамет-АНТИКОР
  • Спрамет-ТЕРМО
  • Спрамет-НЕСКОЛЬЗИТ
  • Спрамет-НАНО

Преимуществами композиций Спрамет являются:

  • более высокая твердость,
  • стойкость к абразивному износу.

Для повышения защитных свойств применяются пропитки металлического покрытия специальными составами. Системы защиты Спрамет гарантируют срок эксплуатации объектов от 15 до 50 лет службы без коррозии.

Коррозионная стойкость композиций Спрамет обусловлена следующими факторами:

  • во-первых, базовый металлизационный слой системы Спрамет сам по себе хорошо защищает поверхность от коррозии;
  • в-вторых, пропитка пористой структуры металлической матрицы специальными составами усиливает антикоррозионные свойства системы в широком диапазоне агрессивных сред и температур;
  • в-третьих, при повреждении композиции Спрамет до защищаемого материала вступает в действие еще один механизм защиты, а именно протектор, который не позволяет развиваться подпленочной коррозии и затягивает местное повреждение.

При повреждении металлической матрицы в агрессивной среде защищаемый металл и металл покрытия в присутствии воды образуют гальваническую пару. Разность потенциалов в такой цепи определяется местоположением металлов в электрохимическом ряду напряжений. Поскольку защищаемым материалом, как правило, являются черные металлы, то материал покрытия начинает расходоваться, защищая металл основы и затягивая поврежденную область. В этом случае скорость коррозии определяется разностью электродных потенциалов пары. Кроме того, если повреждение покрытия незначительно (царапина), оно заполняется продуктами окисления материала покрытия, и процесс коррозии прекращается или существенно замедляется. Например, в морской и пресной воде алюминий и цинк расходуются со скоростью 3-10 микрон в год, обеспечивая не менее 25 лет стойкости к коррозии при толщине слоя в 250 мкм.

К плюсам обработки изделий защитными композициями Спрамет относятся следующие:

  • отсутствие ограничений по размерам изделий по сравнению с горячим цинкованием и гальваникой;
  • возможность защиты сварных швов после монтажа конструкции (в случае сварки оцинкованных изделий качество шва ухудшается вследствие попадания в сварную ванну соединений цинка);
  • возможность нанесения защиты Спрамет в полевых условиях, что неосуществимо ни в случае цинкования, ни в случае порошковой окраски.

Некоторые варианты применения системы защиты Спрамет

Спрамет-АНТИКОР
  • Спрамет-100 — система, стойкая к коррозии и к механическим воздействиям как при обычных условиях, так и при температурах до 650°С.
  • Спрамет-130 применяется для защиты от коррозии в пресной воде, имеет хорошую стойкость к воздействиям воды различного состава и механическим воздействиям льда.
  • Спрамет-150 применяется при атмосферной коррозии, имеет хорошую химостойкость, используется при хранении нефтепродуктов.
  • Спрамет-300 используется при атмосферной коррозии, температура эксплуатации до 400°С, имеет высокую адгезию.
  • Спрамет-310 лучше всего эксплуатируется в объектах тепло- и водо- снабжения, стоек к ингибиторам в системах подготовки воды.
  • Спрамет-320 применяется в очистных сооружениях ЖКХ: имеет высокую стойкость к воздействиям жидкостей с переменными pH.
  • Спрамет-330 применяется при атмосферной коррозии и коррозии в пресной воде при температуре эксплуатации до 120°С, он стоек к механическим воздействиям и имеет высокую адгезию.
  • Спрамет-430 применяется для защиты от атмосферной коррозии в присутствии хлоридов, стоек к противогололедным реагентам и обладает декоративным эффектом.
  • Спрамет-425 лучше использовать для защиты от коррозии в морской воде, стоек к механическим воздействиям, включая воздействие льда, имеет хорошую стойкость к хлоридам.
Спрамет-ТЕРМО

Антикоррозийная высокотемпературная система. Температура эксплуатации — до 650°С.

  • Спрамет-100 стойкая система к коррозии как при обычных условиях, так и при температурах до 650°С.
  • Спрамет-160. На металлическую матрицу наносится сертифицированное огнезащитный состав, который вспенивается при воздействии высокой температуры и обеспечивает огнестойкость до 60 минут.
Спрамет-НЕСКОЛЬЗИТ Спрамет-500 и 510 обеспечивают шероховатость обрабатываемой поверхности, что предотвращает проскальзывание персонала и техники. Применимо для металлических трапов морских платформ, вертолетных площадок, палуб и других пешеходных металлических дорожек. Спрамет-НАНО В этом случае металлическая матрица представляет собой наноструктурированное покрытие. Такое покрытие имеет еще более низкую пористость, гораздо более высокую стойкость к коррозионному и эрозионному износу, увеличенную жаропрочность, что существенно повышает ресурс защищаемого изделия.

В связи с повышенной надежностью и долговечностью композиции Спрамет рекомендуется применять тогда, когда к защищаемому объекту предъявляют повышенные требования: существенное увеличение межремонтного цикла или обеспечение антикоррозионной защиты на весь период эксплуатации металлоконструкций, а также при отсутствии доступа для восстановления защитных покрытий.

Практическое применение (2011 год)

Специалистами ЗАО «Плакарт» завершены работы по нанесению системы Спрамет-100 для защиты от коррозии выхлопных шахт газоперекачивающих агрегатов системы магистральных газопроводов ОАО «Газпром». Система, стойкая к коррозии как при обычных условиях, так и при температурах до 650°С, отличается ровным белым цветом поверхности, не боится механических повреждений, перепадов температур и ультрафиолетового излучения.

Выполнены работы по нанесению коррозионно-стойкой системы Спрамет-300 на ригели одного из вантовых мостов олимпийской трассы Альпика-Сервис. Олимпийские объекты, эксплуатируемые в сложных климатических условиях, требуют гарантированной долговременной защиты от коррозии. Система Спрамет-АНТИКОР не только превосходно защищает от коррозии, но и служит отличным праймером для лакокрасочных покрытий.

Выполнены работы по нанесению системы защиты Спрамет-150 на внутренние поверхности резервуаров для хранения нефтепродуктов в Астраханской области. Данная антикоррозионная система была нанесена на десятки тысяч квадратных метров внутренних поверхностей резервуара и плавающего в нём понтона.

С точки зрения стандартизации система «Спрамет» относится к группе комбинированных металлизационно-лакокрасочных покрытий, рекомендованных к применению на особо опасных и уникальных объектах СНИП 2.03.11 «Защита строительных конструкций от коррозии», а также многими отраслевыми стандартами и стандартами ISO.

Система качества ЗАО «Плакарт» сертифицирована по ISO 9001. ЗАО «Плакарт» является членом саморегулируемых организаций «Западуралстрой» и «Сопкор». Товарный знак Спрамет™ зарегистрирован и принадлежит ЗАО «Плакарт».